الهدف من هذه الورقة هو التحقيق في نهج قياس التشابه في ذاكرة الترجمة (TM) في خمس أدوات ترجمة بمساعدة كمبيوتر تمثيلي عند استرداد جمل التباين في الفعل في الترجمة باللغة العربية إلى الإنجليزية. في اللغة الإنجليزية، تشمل الملصقات في الأفعال في الأفعال فقط؛ على عكس اللغة الإنجليزية، الأفعال باللغة العربية مشتق من الصوت، والمزاج، والتوتر، والعدد والشخص من خلال الملصقات الانتشارية المختلفة E.G. قبل أو نشر جذر الفعل. يركز السؤال البحثي على إنشاء ما إذا كانت خوارزمية التشابه TM تقيس مزيجا من التثبيتات الانتشاري ككلمة أو كتدخل في الطابع عند استرداد شريحة. إذا تم التعامل معها كتدخل في الطابع، هل تعاقب أنواع التدخل بنفس القدر أو بشكل مختلف؟ يفحص هذه الورقة تجريبيا، من خلال منهجية اختبار الصندوق الأسود وأداة جناح اختبار، والعقوبات التي فرضت الخوارزميات الحالية لأنظمة TM عندما تكون شرائح الإدخال ومصادر TM المستردة هي نفسها بالضبط، باستثناء اختلاف في ملحق لانضمام. من المتوقع أن تكون أنظمة TM بعض المعرفة اللغوية، فإن العقوبة ستكون خفيفة للغاية، والتي ستكون مفيدة للمترجمين، نظرا لأن مباراة عالية التسجيل سيتم تقديمها بالقرب من أعلى قائمة المقترحات. ومع ذلك، فإن تحليل إخراج أنظمة TM يظهر أن التصفيات الانتشارية تعاقب بشكل أكبر من المتوقع بطرق مختلفة. قد يتم التعامل معها كتدخل على الكلمة بأكملها، أو كغير حرف واحد.
The aim of this paper is to investigate the similarity measurement approach of translation memory (TM) in five representative computer-aided translation (CAT) tools when retrieving inflectional verb-variation sentences in Arabic to English translation. In English, inflectional affixes in verbs include suffixes only; unlike English, verbs in Arabic derive voice, mood, tense, number and person through various inflectional affixes e.g. pre or post a verb root. The research question focuses on establishing whether the TM similarity algorithm measures a combination of the inflectional affixes as a word or as a character intervention when retrieving a segment. If it is dealt with as a character intervention, are the types of intervention penalized equally or differently? This paper experimentally examines, through a black box testing methodology and a test suite instrument, the penalties that TM systems' current algorithms impose when input segments and retrieved TM sources are exactly the same, except for a difference in an inflectional affix. It would be expected that, if TM systems had some linguistic knowledge, the penalty would be very light, which would be useful to translators, since a high-scoring match would be presented near the top of the list of proposals. However, analysis of TM systems' output shows that inflectional affixes are penalized more heavily than expected, and in different ways. They may be treated as an intervention on the whole word, or as a single character change.
المراجع المستخدمة
https://aclanthology.org/
يستخدم نظام ذاكرة الترجمة (TM)، وهو مكون رئيسي للترجمة بمساعدة الكمبيوتر (CAT)، على نطاق واسع لتحسين إنتاجية المترجمين البشريين من خلال تقديم استخدام فعال للمورد المترجم سابقا.نقترح طريقة لتحقيق استرجاع عالي السرعة من ذاكرة الترجمة الكبيرة عن طريق تق
أنظمة ذاكرة الترجمة (TMS) هي المكون الرئيسي لأدوات الترجمة المساعدة بمساعدة الكمبيوتر. يقومون بتخزين الترجمات التي تسمح بتوفير الوقت عن طريق تقديم الترجمات على قاعدة البيانات من خلال مطابقة عدة أنواع مثل المباريات الغامضة، والتي تحسبها خوارزميات مثل
على الرغم من شعبية هائلة لأنظمة ذاكرة الترجمة والبحث النشط في هذا المجال، لا تزال ميزات معالجة اللغة الخاصة بها تعاني من قيود معينة.في حين أن العديد من الأوراق الأخيرة تركز على قدرات مطابقة الدلالية من TMS، فإن هذه الدراسة المخططة ستعالج كيفية أداء ه
أظهرت مؤخرا تقنيات محاذاة المستندات بناء على تمثيلات جملة متعددة اللغات في مؤخرا حالة النتائج الفنية.ومع ذلك، تعتمد هذه التقنيات على تقنيات قياس المسافة غير المزعجة، والتي لا يمكن تغريمها بالمهمة في متناول اليد.في هذه الورقة، بدلا من تقنيات قياس المس
يدرس هذا البحث مفهوم عدم التناظر في الترجمة بين اللغتين الإنكليزية و العربية, و يعرض القضايا الرئيسية التي يواجهها المترجمون عند الترجمة, مثل القيود الثقافية و الحواجز اللغوية. كما يقترح عددا من الاستراتيجيات التي تساعد على التعامل مع عدم التناظر, بم