ترغب بنشر مسار تعليمي؟ اضغط هنا

نحو أنظمة ذاكرة الترجمة الجيل الجديدة

Towards New Generation Translation Memory Systems

271   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

على الرغم من شعبية هائلة لأنظمة ذاكرة الترجمة والبحث النشط في هذا المجال، لا تزال ميزات معالجة اللغة الخاصة بها تعاني من قيود معينة.في حين أن العديد من الأوراق الأخيرة تركز على قدرات مطابقة الدلالية من TMS، فإن هذه الدراسة المخططة ستعالج كيفية أداء هذه الأدوات عند التعامل مع شرائح أطول وما إذا كان هذا قد يكون سببا لدرجات مطابقة أقل.سيتم تنفيذ تجربة على Corpora من مجالات مختلفة (متكررة).بعد النتائج، سيتم تقديم توصيات للتطورات المستقبلية من TMS الجديدة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يستخدم نظام ذاكرة الترجمة (TM)، وهو مكون رئيسي للترجمة بمساعدة الكمبيوتر (CAT)، على نطاق واسع لتحسين إنتاجية المترجمين البشريين من خلال تقديم استخدام فعال للمورد المترجم سابقا.نقترح طريقة لتحقيق استرجاع عالي السرعة من ذاكرة الترجمة الكبيرة عن طريق تق ييم التشابه بناء على نموذج ناقل، وتقديم النتيجة التجريبية.من خلال تجربتنا باستخدام Lucene، محرك بحث استرجاع لاسترجاع المعلومات مفتوح المصدر، نستنتج أنه من الممكن تحقيق سرعة استرجاع في الوقت الفعلي لن حول عشرات من ميكروثونات حتى بالنسبة لذاكرة الترجمة الكبيرة مع 5 ملايين زوج قطاعي.
حققت نماذج جيل الجدول إلى النص العصبي تقدما ملحوظا في صفيف المهام.ومع ذلك، نظرا لطبيعة البيانات الجائعة للبيانات النماذج العصبية، تعتمد عروضها بقوة على أمثلة تدريبية واسعة النطاق، مما يحد من تطبيقها في تطبيقات العالم الحقيقي.لمعالجة هذا، نقترح إطارا جديدا: النموذج الأولي إلى إنشاء (P2G)، لجيل الجدول إلى النص تحت سيناريو القليل من اللقطات.يستخدم الإطار المقترح النماذج الأولية المستردة، التي تم اختيارها بشكل مشترك من قبل نظام IR ومحدد نموذج أولي جديد لمساعدة النموذج الذي سد الفجوة الهيكلية بين الجداول والنصوص.النتائج التجريبية على ثلاثة مجموعات بيانات معيار مع ثلاث نماذج أحدث من النماذج توضح أن الإطار المقترح يحسن بشكل كبير من أداء النموذج عبر مختلف مقاييس التقييم.
يعد عدم وجود بيانات تدريبية المسمى للميزات الجديدة مشكلة شائعة في أنظمة الحوار في العالم الحقيقي المتغيرة بسرعة.كحل، نقترح نموذج توليد إعادة صياغة متعددة اللغات يمكن استخدامه لإنشاء كلمات جديدة للميزة المستهدفة واللغة المستهدفة.يمكن استخدام الكلام ال ذي تم إنشاؤه لزيادة بيانات التدريب الحالية لتحسين تصنيف نماذج وضع العلامات الفضائية.نحن نقيم جودة الكلام التي تم إنشاؤها باستخدام مقاييس التقييم الجوهرية وإجراء تجارب التقييم المصب مع اللغة الإنجليزية كلغة مصدر وتسع لغات مستهدفة مختلفة.تعرض طريقنا وعد عبر اللغات، حتى في إعداد طلقة صفرية حيث لا توجد بيانات بذرة متاحة.
تصف هذه الورقة نظامنا (معرف الفريق: Nictrb) للمشاركة في مهمة الترجمة الآلية المحظورة Wat'21.في نظامنا المقدم، صممنا نهج تدريب جديد للترجمة الآلية المحظورة.بواسطة أخذ العينات من هدف الترجمة، يمكننا حل المشكلة التي لا تملك بيانات التدريب العادية مفردات مقيدة.مع مزيد من المساعدة في فك التشفير المقيد في مرحلة الاستدلال، حققنا نتائج أفضل من الأساس، مما يؤكد فعالية حلنا.بالإضافة إلى ذلك، حاولنا أيضا محول الفانيليا والخريج كشبكة العمود الفقري للنموذج، بالإضافة إلى إعاقة نموذجية، مما أدى إلى تحسين أداء الترجمة النهائي.
تصف هذه الورقة أنظمة الترجمة الآلية العصبية Niutrans لمهام الترجمة من الأخبار WMT 2021.لقد جعلنا التقديمات إلى 9 اتجاهات لغة، بما في ذلك محاميات اللغة الإنجليزية، اليابانية والروسية والأيسلندية والأيسلندية والإنجليزية.بنيت أنظمتنا الأساسية على العديد من المتغيرات الفعالة من المحولات، على سبيل المثال، محول DLCL، ODE-Transformer.نحن نستخدم أيضا الترجمة مرة أخرى، وقطاع المعرفة، وتقنيات ما بعد الفرقة، والتقنيات الدقيقة للتكرار لتعزيز الأداء النموذجي كذلك.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا