تقيم هذه الدراسة ما إذا كان يمكن استخدام خوارزميات الترشيح التعاونية التعاونية النموذجية (CF)، والتي تمت دراستها على نطاق واسع وتستخدم على نطاق واسع لبناء أنظمة التوصية، للتنبؤ بالأسماء المشتركة التي يمكن أن تتخذها المسند ككمل لها. نجد أنه عند تدريب
البيانات المشتركة في الفعل الفعل المنسق من كوربوس الأمريكيين المعاصرين - الإنجليزية (COCA)، اثنين من خوارزميات CF شعبية تعتمد على النموذج، وتحلل القيمة المفرد وعوامل مصفوفة غير سلبية، تؤدي بشكل جيد في هذه المهمة ، يحقق كل منها AUROC من 0.89 على الأقل وتجاوز العديد من خطوط الأساس المختلفة. نوضح بعد ذلك أن ناقلات التضمين للأفعال والأسماء المستفادة من طرازات CF يمكن قياسها (عبر تطبيق K- يعني التجميع) مع الحد الأدنى من فقدان الأداء في مهمة التنبؤ مع استخدام عدد صغير فقط من الأفعال والأسماء (بالنسبة لعدد الأفعال والأسماء المتميزة). أخيرا، نقيم المحاذاة بين ناقلات التضمين الكمي للأفعال وفئات الفعل ليفين، وتجدر عن أن المحاذاة تجاوزت العديد من خطوط الأساس العشوائية. نستنتج عن طريق مناقشة كيفية تطبيق خوارزميات CF النموذجية القائمة على قيود التعلم على الاختيار المكونات بين مختلف الفئات المعجمية وكيف يمكن بعد ذلك استخدام هذه النماذج (المستفادة) لزيادة قواعد الدائرة الانتخابية (القاعدة).
ثبت أن أداء أنظمة NMT يعتمد على جودة بيانات التدريب.في هذه الورقة، نستكشف أدوات مختلفة مفتوحة المصدر التي يمكن استخدامها لتسجيل جودة أزواج الترجمة، بهدف الحصول على كورسا نظيفة لتدريب نماذج NMT.نقيس أداء هذه الأدوات من خلال ربط درجاتهم بالدرجات البشري
ة، وكذلك نماذج الرتبة المدربة على مجموعات البيانات التي تمت تصفيتها الناتجة من حيث أدائها في مجموعات اختبار مختلفة ومقاييس أداء MT.
في معظم سيناريوهات جهاز التقطير أو سرقة الترجمة الآلية العصبية، يتم استخدام فرضية التسجيل أعلى النموذج المستهدف (المعلم) لتدريب نموذج جديد (طالب).إذا كانت الترجمات المرجعية متاحة أيضا، فيمكن إظهار الفرضيات الأفضل (فيما يتعلق بالمراجع) وفرضيات فقراء إ
ما إما إما إما أو إشرافها.تستكشف هذه الورقة طريقة مشهد أخذ العينات (تشذيب، فرضية ترشيحها وتشكيلها، واستكريسيا ومجمديها) مع الإنجليزية إلى التشيكية والإنجليزية إلى طرازات MT الألمانية باستخدام مقاييس تقييم MT القياسية.نظرا لأن الإرتفاع الدقيق والتركيبة مع البيانات الأصلية يؤدي إلى أداء أفضل عند مقارنتها بالتدريب فقط على البيانات الأصلية أو المركبة أو تركيها المباشر.
تصف تصفية البيانات للترجمة الآلية (MT) مهمة تحديد مجموعة فرعية من Corpus المعطى، ربما صاخبة مع الهدف لزيادة أداء نظام MT الذي تم تدريبه على هذه البيانات المحددة. على مر السنين، تم اقتراح العديد من نهج الترشيح المختلفة. ومع ذلك، فإن تعريفات المهام الم
ختلفة وظروف البيانات تجعل من الصعب رسم مقارنة ذات مغزى. في العمل الحالي، نهدف إلى نهج أكثر منهجية للمهمة في متناول اليد. أولا، نقوم بتحليل أداء تحديد اللغة، وهي أداة تستخدم عادة لتصفية البيانات في مجتمع MT وتحديد نقاط الضعف المحددة. بناء على النتائج التي توصلنا إليها، نقترح بعد ذلك العديد من أساليب رواية لتصفية البيانات، استنادا إلى Argeddings Word عبر اللغات. قارنا مناهجنا إلى إحدى الطرق الفائزة من المهمة المشتركة ل WMT 2018 على تصفية Corpus الموازية على ثلاث مهام حقيقية عالية الموارد MT. نجد الطريقة المذكورة المذكورة، والتي كانت تؤدي قوية للغاية في المهمة المشتركة WMT، لا تؤدي بشكل جيد خلال ظروف مهمتنا الأكثر واقعية. بينما نجد أن نهجنا تخرج في الجزء العلوي من المهام الثلاثة، فإن المتغيرات المختلفة تؤدي أفضل مهام مختلفة. تشير تجارب أخرى على المهمة المشتركة لعاملة WMT 2020 للتصفية الشديدة الموازية أن أساليبنا تحقق نتائج مماثلة لأقوى التقديمات لهذه الحملة.
نقدم نظاما للصفر بالرصاص لغة هجومية عبر اللغات وتصنيف الكلام الكراهية.تم تدريب النظام على مجموعات البيانات الإنجليزية واختباره في مهمة اكتشاف محتوى خطاب الكراهية والوسائط الاجتماعية الهجومية في عدد من اللغات دون أي تدريب إضافي.تظهر التجارب قدرة رائعة
لكلا النموذجين للتعميم من اللغة الإنجليزية إلى لغات أخرى.ومع ذلك، هناك فجوة متوقعة في الأداء بين النماذج التي تم اختبارها عبر اللغات والنماذج الأولية.يتوفر أفضل نموذج أداء (مصنف المحتوى الهجومي) عبر الإنترنت ك api بقية.
إنّ كَون مطال إشارات التخطيط الكهربائي للدماغ EEG شديد الصّغر يجعل من الصعب التقاطها بدون التقاط الكثير من إشارات الضجيج (الناتجة عن العوامل الموجودة في الوسط المحيط) التي تؤثّر على إشارة تخطيط الدماغ الأصلية، و لذلك سيكون استخدام المرشحات ضرورة حتمي
ة لحذف الضجيج و الحصول على إشارة صحيحة و واضحة.
سنتطرق في هذه الدراسة لتصميم دارة إلكترونية بالاعتماد على متحكم صغري و مضخم تجهيزي Instrumentation Amplifier و مضخم عملياتي Operational Amplifier تقوم بثلاث عمليات أساسية، هي استقبال إشارات تخطيط كهربائي من رأس (دماغ) المريض ثم تحويلها من الشكل التشابهي إلى الشكل الرقمي، ثم إرسال الإشارة الرقمية الناتجة إلى مجموعة مكونة من ثلاثة مرشحات رقمية.
كما سنتطرق لتصميم ثلاثة مرشحات رقمية ذات استجابة إهليلجية Elliptic Response قابلة للاستخدام في الزمن الحقيقي للمساهمة في عملية ترشيح الضجيج المتراكب مع إشارات تخطيط الدماغ الكهربائية (التي تُظهِر حالة دماغ المريض) لتكون ضمن الجزء البرمجي المتمّم للجزء الداراتي في نظام التقاط هذه الإشارات.
و في النهاية سنقوم بعرض طريقة استخدام الدارة الإلكترونية المصمّمة مع المرشحات الرقمية الثلاثة المصممّة و عرض النتائج و مناقشتها.
تم استخدام البرنامج Eagle 6.6 لتصميم و رسم الدارة الإلكترونية، و البرنامج CodeVision AVR 3.12 لكتابة البرنامج المثبَّت على المتحكم الصغري، كما تم استخدام البرنامج Mathworks MATLAB 2014a لتصميم المرشحات الرقمية و الأداة Mathworks MATLAB 2014a Simulink لإجراء التجارب و الحصول على النتائج.
تنتمي الأنظمة الناصحة إلى صف من الأنظمة المصممة لمساعدة الافراد على معالجة المعلومات الإضافية الزائدة أو الناقصة. يمكن لهذه الأنظمة أن تساعد الأفراد من خلال تأمين النصائح و ذلك بالاعتماد على مجموعة من التقنيات .إن تقنية الفلترة التعاونية Collaborativ
e filtering مستخدمة بشكل واسع لتحقيق التنبؤ ضمن الأنظمة الناصحة.أعرض ضمن هذا البحث طريقة تستخدم علاقات التفضيل بدلا من التنبؤ المطلق و ذلك لحساب التشابه بهدف إيجاد تقدير تنبؤي بسلع جديدة.
تظهر النتائج التجريبية أن الطريقة الموضحة ضمن هذا البحث تؤمن نتيجة أفضل من طرق أخرى كطريقة Somers Coefficient على سبيل المثال.
تقترح الدراسة طريقة جديدة لتجزيء صور الرحم فوق السمعية للحصول على صور الجنين منها و ذلك اعتماداً على عدة مراحل، تتضمن المرحلة الأولى عملية المعالجة المسبقة و التي يتم فيها إزالة ضجيج البقع من الصور فوق السمعية اعتماداً على الترشيح المتتالي من قبل مرش
حي جابور و الوسيط. يلي هذه المرحلة تطبيق خوارزمية مخطط الشكل الفعال المستقلة عن الحواف لتجزيء صور الرحم. أما المرحلة الأخيرة فتمثل
عملية المعالجة اللاحقة و فيها يتم تطبيق عدد من عمليات الهندسة الصورية(المورفولوجيا) للتخلص من المناطق غير المرغوبة و الحصول على المناطق الهامة فقط.
تم اختبار النظام المصمم على قاعدة بيانات صور طبية فوق سمعية محملة من مركز الصور فوق السمعية الطبية ULTRASCAN CENTRE الموجود في مدينة Kaloor في الهند إذ تم تحميل الصور من موقع المركز على الانترنت. أظهرت الاختبارات العملية أن تقنية الترشيح المتتالي المقترحة قد حسنت أداء خوارزمية مخطط الشكل الفعال بشكل كبير بحيث تمكن النظام المقترح من تجزيء صور الرحم حتى بوجود ضجيج كبير على الصور.
نعرض في هذا البحث مقاربة لتكامل محركات البحث مع تقنيات الترشيح، و ذلك من خلال علاقة دينامكية للتهجين بين الترشيح التعاوني، و الترشيح المرتكز على المحتوى؛ بهدف التخفيف من المحدوديات السابقة، و تحسين مقاييس الدقة و الاستذكار للوثائق المسترجعة. تَستخدم
المقاربة المقترحة نموذج أنطلوجي المجال (Domain ontology) في تمثيل لاحة المستخدم بهدف الحد من الأخطاء و التشويش الناتجة عن عد لاحة المستخدم ككيان واحد كما تَستفيد من تفاعل المستخدم و نشاطه، للقيام بعمليات التعليم و التكيف المستمر للاحة المستخدم؛ لتعكس بشكل دائم شخصيته و ميوله دون الاعتماد على أمثلة تدريبية فقط؛ بهدف تحسين الترشيح، و تلبية حاجة المستخدم بالحصول على المعلومات الموائمة بدقة أكبر.
يهدف البحث إلى دراسة تأثير طول معامل التصفية المحسوب في عملية التصفية العكسية في نتـائج
عملية التصفية للمعطيات السيزمية. كُتبت في هذا البحث جميع البرامج المستخدمة في تحديـد الإشـارة
السيزمية و حسابات معامل التصفية و تنفيذ عملية الثني من قبل المؤلف،
كمـا أجريـت عمليـة حـساب
لمعاملات تصفية بأطوال مختلفة انطلاقاً من معطيات سيزمية حقلية من موقعي سد الصايغ في محافظـة
السويداء و سد راجو في محافظة حلب، و درس تأثير هذه الأطوال المختلفة في نتـائج التـصفية. كـذلك
أجريت في هذا البحث تجارب على تقصير لطول معامل التصفية المحسوب و دراسة تأثير هذا التقصير في
نتائج التصفية.
بينت النتائج أنه يمكن استخدام أطوال صغيرة لمعامل التصفية المحسوب دون أن يؤثر ذلك في قـدرة
التمييز على المقطع السيزمي، كما أظهرت التجارب أن تقصير معامل التصفية المحسوب يتعلـق بطـول
معامل التصفية.