تصف تصفية البيانات للترجمة الآلية (MT) مهمة تحديد مجموعة فرعية من Corpus المعطى، ربما صاخبة مع الهدف لزيادة أداء نظام MT الذي تم تدريبه على هذه البيانات المحددة. على مر السنين، تم اقتراح العديد من نهج الترشيح المختلفة. ومع ذلك، فإن تعريفات المهام المختلفة وظروف البيانات تجعل من الصعب رسم مقارنة ذات مغزى. في العمل الحالي، نهدف إلى نهج أكثر منهجية للمهمة في متناول اليد. أولا، نقوم بتحليل أداء تحديد اللغة، وهي أداة تستخدم عادة لتصفية البيانات في مجتمع MT وتحديد نقاط الضعف المحددة. بناء على النتائج التي توصلنا إليها، نقترح بعد ذلك العديد من أساليب رواية لتصفية البيانات، استنادا إلى Argeddings Word عبر اللغات. قارنا مناهجنا إلى إحدى الطرق الفائزة من المهمة المشتركة ل WMT 2018 على تصفية Corpus الموازية على ثلاث مهام حقيقية عالية الموارد MT. نجد الطريقة المذكورة المذكورة، والتي كانت تؤدي قوية للغاية في المهمة المشتركة WMT، لا تؤدي بشكل جيد خلال ظروف مهمتنا الأكثر واقعية. بينما نجد أن نهجنا تخرج في الجزء العلوي من المهام الثلاثة، فإن المتغيرات المختلفة تؤدي أفضل مهام مختلفة. تشير تجارب أخرى على المهمة المشتركة لعاملة WMT 2020 للتصفية الشديدة الموازية أن أساليبنا تحقق نتائج مماثلة لأقوى التقديمات لهذه الحملة.
Data filtering for machine translation (MT) describes the task of selecting a subset of a given, possibly noisy corpus with the aim to maximize the performance of an MT system trained on this selected data. Over the years, many different filtering approaches have been proposed. However, varying task definitions and data conditions make it difficult to draw a meaningful comparison. In the present work, we aim for a more systematic approach to the task at hand. First, we analyze the performance of language identification, a tool commonly used for data filtering in the MT community and identify specific weaknesses. Based on our findings, we then propose several novel methods for data filtering, based on cross-lingual word embeddings. We compare our approaches to one of the winning methods from the WMT 2018 shared task on parallel corpus filtering on three real-life, high resource MT tasks. We find that said method, which was performing very strong in the WMT shared task, does not perform well within our more realistic task conditions. While we find that our approaches come out at the top on all three tasks, different variants perform best on different tasks. Further experiments on the WMT 2020 shared task for parallel corpus filtering show that our methods achieve comparable results to the strongest submissions of this campaign.
المراجع المستخدمة
https://aclanthology.org/
نجحت شبكات الخصومة الإندنية (GANS) في تحفيز Adgeddings Word عبر اللغات - خرائط من الكلمات المتطابقة عبر اللغات - دون إشراف.على الرغم من هذه النجاحات، فإن أداء GANS الخاص بالحالة الصعبة للغات البعيدة لا يزال غير مرض.تم تفسير هذه القيود من قبل قوات الق
نقدم نظاما للصفر بالرصاص لغة هجومية عبر اللغات وتصنيف الكلام الكراهية.تم تدريب النظام على مجموعات البيانات الإنجليزية واختباره في مهمة اكتشاف محتوى خطاب الكراهية والوسائط الاجتماعية الهجومية في عدد من اللغات دون أي تدريب إضافي.تظهر التجارب قدرة رائعة
في هذه الورقة، نقدم نظاما لحل مهمة الغموض في السياق عبر اللغات واللغات متعددة اللغات. قدم منظمو المهام بيانات أحادية الأونلينغ بعدة لغات، ولكن لم تتوفر بيانات تدريبية عبر اللغات. لمعالجة عدم وجود بيانات تدريبية عبر اللغات المقدمة رسميا، قررنا توليد ه
في هذا العمل، نصف جهودنا في تحسين مجموعة متنوعة من اللغات الناتجة عن نظام NLG القائم على القواعد للصحافة الآلية.نقدم اقترابين: واحد استنادا إلى إدراج كلمات جديدة تماما في جمل تم إنشاؤها من القوالب، وآخر بناء على استبدال الكلمات بالمرادفات.تشير نتائجن
ثبت أن أداء أنظمة NMT يعتمد على جودة بيانات التدريب.في هذه الورقة، نستكشف أدوات مختلفة مفتوحة المصدر التي يمكن استخدامها لتسجيل جودة أزواج الترجمة، بهدف الحصول على كورسا نظيفة لتدريب نماذج NMT.نقيس أداء هذه الأدوات من خلال ربط درجاتهم بالدرجات البشري