دراسة الهياكل الجيولوجية المكشوفة على سطح الأرض ذات أهمية كبيرة بشكل عام وخصوصا في التصميم الهندسي والبناء.
في هذا البحث ، استخدمنا 2206 صورة مع 12 ملصق للتعرف على الهياكل الجيولوجية بناءً على نموذج Inception-v3. تم اعتماد الصور ذات التدرج الرمادي واللون في النموذج. كما تم بناء نموذج الشبكة العصبية التلافيفية (CNN) وتم تطبيق خوارزمية أقرب جار (KNN) والشبكة العصبية الاصطناعية (ANN) وتعزيز التدرج الشديد (XGBoost) في تصنيف الهياكل الجيولوجية بناءً على الميزات المستخرجة من مكتبة رؤية الكمبيوتر مفتوحة المصدر (OpenCV).
أخيرًا ، تمت مقارنة أداء الطرق الخمس وأظهرت النتائج أن أداء KNN و ANN و XGBoost كان ضعيفًا وبدقة أقل من 40.0٪. أما CNN فعد عانت من فرط التدريب Overfitting.
كان للنموذج الذي تم تدريبه باستخدام التعلم بالنقل تأثير كبير على مجموعة بيانات صغيرة من صور التركيب الجيولوجي. وأفضل نموذجين وصلوا إلى دقة 83.3٪ و 90.0٪ على التوالي. هذا يدل على أن النسيج هو السمة الرئيسية في هذا البحث. يمكن أن يستخرج التعلم القائم على نموذج التعلم العميق ميزات بيانات البنية الجيولوجية الصغيرة بشكل فعال ، وهو قوي في تصنيف صور الهيكل الجيولوجي.
No English abstract
المراجع المستخدمة
Fisher, M.A.; Normark, W.R.; Greene, H.G.; Lee, H.J.; Sliter, R.W. Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel, Southern California. Mar. Geol. 2005, 224, 1–22.
قدم الصفات مثل الثقيلة (كما هو الحال في الأمطار الغزيرة) والرياح (كما في يوم عاصف) القيم المحتملة لشدة السمات ومناخها على التوالي. لا تتحقق السمات نفسها بشكل علني وهناها هذه المنطقة الضالة. في حين يمكن استنتاج هذه السمات بسهولة من قبل البشر، فإن تصني
نحن نعتبر التمثيل الهرمي للوثائق كرسوم بيانية واستخدام التعلم العميق الهندسي لتصنيفها إلى فئات مختلفة.في حين أن الشبكات العصبية الرسم البيانية يمكن أن تتعامل مع الهيكل المتغير بشكل فعال للمستندات التسلسل الهرمية باستخدام عمليات تمرير رسالة ثابتة للصب
بصرف النظر عن نجاح نهج تعلم النطاق المختلط في مجال التعلم العميق لحل المهام المختلفة لمعالجة اللغة الطبيعية، فإنه لا يقرض حل جماعيا للكشف عن المعلومات الخاطئة من بيانات وسائل التواصل الاجتماعي CovID-19. نظرا للتعقيد المتأصل من هذا النوع من البيانات،
مكنت نماذج اللغة العصبية العميقة مثل بيرت التطورات الأخيرة في العديد من مهام معالجة اللغة الطبيعية. ومع ذلك، نظرا للجهد والتكلفة الحاسوبية المشاركة في التدريب المسبق لها، يتم إدخال هذه النماذج عادة فقط لعدد صغير من لغات الموارد عالية الوزن مثل اللغة
تقنيات التحييد، على سبيل المثالإن رفض المسؤولية والحرمان من الضحية، يتم استخدامه في سرد شكوك تغير المناخ لتبرير عدم العمل أو تعزيز وجهة نظر بديلة.نسترحب أولا بالعلوم الاجتماعية لإدخال المشكلة في مجتمع NLP، وتقديم حبيبتي مخطط الترميز، ثم جمع التعليقات