Do you want to publish a course? Click here

Mining Public Opinion about Economic Issues: Twitter and the U.S. Presidential Election

ترجمة الورقة البحثية بعنوان : استكشاف المعرفة من الرأي العام في المسائل الاقتصادية : تويتر و الانتخابات الرئاسية الأمريكية

1242   2   21   0.0 ( 0 )
 Publication date 2019
and research's language is العربية
 Created by Ivan Abboud




Ask ChatGPT about the research

Opinion polls have been the bridge between public opinion and politicians in elections. However, developing surveys to disclose people's feedback with respect to economic issues is limited, expensive, and time-consuming. In recent years, social media such as Twitter has enabled people to share their opinions regarding elections. Social media has provided a platform for collecting a large amount of social media data. This paper proposes a computational public opinion mining approach to explore the discussion of economic issues in social media during an election. Current related studies use text mining methods independently for election analysis and election prediction; this research combines two text mining methods: sentiment analysis and topic modeling. The proposed approach has effectively been deployed on millions of tweets to analyze economic concerns of people during the 2012 US presidential election


Artificial intelligence review:
Research summary
تستعرض هذه الورقة البحثية كيفية استخدام تويتر لاستكشاف الرأي العام حول المسائل الاقتصادية خلال الانتخابات الرئاسية الأمريكية لعام 2012. تقترح الورقة منهجية تجمع بين تحليل المشاعر ونمذجة المواضيع لتحليل ملايين التغريدات. تهدف المنهجية إلى فهم ردود الفعل الإيجابية والسلبية تجاه السياسات الاقتصادية للمرشحين باراك أوباما وميت رومني. أظهرت النتائج أن أوباما كان متقدماً على رومني في معظم المواضيع الاقتصادية، مما يتماشى مع نتائج دراسات سابقة. تشير الورقة إلى أن دمج تحليل المشاعر ونمذجة المواضيع يعد منهجية فعالة لاستكشاف الرأي العام الاقتصادي عبر وسائل التواصل الاجتماعي.
Critical review
دراسة نقدية: تقدم هذه الورقة البحثية منهجية مبتكرة تجمع بين تحليل المشاعر ونمذجة المواضيع، مما يساهم في تحسين فهم الرأي العام حول المسائل الاقتصادية. ومع ذلك، يمكن الإشارة إلى بعض النقاط التي قد تحتاج إلى تحسين. أولاً، الاعتماد على البيانات من تويتر فقط قد لا يعكس الرأي العام بشكل كامل، حيث أن المستخدمين النشطين على تويتر قد لا يكونون ممثلين لجميع الفئات السكانية. ثانياً، تحليل المشاعر باستخدام الطرق المعجمية قد يكون محدوداً في دقته، خاصةً في التعامل مع اللغة الطبيعية المعقدة والسياقات المختلفة. أخيراً، يمكن توسيع الدراسة لتشمل مواضيع أخرى غير اقتصادية مثل السياسة الخارجية، مما قد يوفر رؤية أكثر شمولية.
Questions related to the research
  1. ما هي المنهجية المقترحة في هذه الورقة البحثية؟

    المنهجية المقترحة تجمع بين تحليل المشاعر ونمذجة المواضيع لتحليل التغريدات المتعلقة بالمسائل الاقتصادية خلال الانتخابات الرئاسية الأمريكية لعام 2012.

  2. ما هي البيانات المستخدمة في الدراسة؟

    تم جمع البيانات من تويتر باستخدام Twitter APIs، حيث تم جمع 24 مليون تغريدة تتعلق بالمرشحين باراك أوباما وميت رومني.

  3. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    أظهرت النتائج أن أوباما كان متقدماً على رومني في معظم المواضيع الاقتصادية، مما يتماشى مع نتائج دراسات سابقة.

  4. ما هي النقاط التي يمكن تحسينها في الدراسة؟

    يمكن تحسين الدراسة من خلال توسيع نطاق البيانات لتشمل منصات تواصل اجتماعي أخرى، واستخدام طرق تحليل مشاعر أكثر دقة، وتوسيع الدراسة لتشمل مواضيع غير اقتصادية مثل السياسة الخارجية.


References used
No references
rate research

Read More

In this tutorial, we will show where we are and where we will be to those researchers interested in this topic. We divide this tutorial into three parts, including coarse-grained financial opinion mining, fine-grained financial opinion mining, and po ssible research directions. This tutorial starts by introducing the components in a financial opinion proposed in our research agenda and summarizes their related studies. We also highlight the task of mining customers' opinions toward financial services in the FinTech industry, and compare them with usual opinions. Several potential research questions will be addressed. We hope the audiences of this tutorial will gain an overview of financial opinion mining and figure out their research directions.
We bring the data from the social networking site Twitter pages, and then we have worked on cleaning and processing operation to the text of for the classification process texts retrieved contain a lot of noise and information is useful for the pr ocess of analyzing the views, such as advertisements and links and e-mail addresses and the presence of many words that do not affect the general orientation of the text, and then get all the publications in the Twitter page and what are the comments about each tweets is intended to know the proportion of supporters and opponents of this publication. We apply Naïve Bayes algorithm in classification, we had the appropriate training, and after passing Posts and comments data (opinions), we got good results on the ratio of supporters of the post and the percentage of his opponents.
The public loan is one source of the state’s public revenues, and it does not happen regularly. The state usually resorts to this source in two cases: The first case: When taxes reach the maximum degree, in other words, the taxation power is exha usted. In this situation, the state is not allowed to impose more taxes otherwise this will lead to dangerous economic effects. The second case: When taxes do not reach the maximum degree, but imposing them can lead to violent reaction by taxpayers. Therefore, the public loan constitutes an effective method in the hands of the state to collect the savings that the taxes cannot obtain. Also, it is an important tool for the distribution of the financial burden between the loaners/ and taxpayers./ The public loan has raised a controversy about its nature, the burden it causes, and its appropriateness, and its impact/role in forming the national capital, etc… Thus, these issues will be discussed in accordance with an appropriate search plan.
Stance detection, which aims to determine whether an individual is for or against a target concept, promises to uncover public opinion from large streams of social media data. Yet even human annotation of social media content does not always capture stance'' as measured by public opinion polls. We demonstrate this by directly comparing an individual's self-reported stance to the stance inferred from their social media data. Leveraging a longitudinal public opinion survey with respondent Twitter handles, we conducted this comparison for 1,129 individuals across four salient targets. We find that recall is high for both Pro'' and Anti'' stance classifications but precision is variable in a number of cases. We identify three factors leading to the disconnect between text and author stance: temporal inconsistencies, differences in constructs, and measurement errors from both survey respondents and annotators. By presenting a framework for assessing the limitations of stance detection models, this work provides important insight into what stance detection truly measures.
Emotion detection from social media posts has attracted noticeable attention from natural language processing (NLP) community in recent years. The ways for obtaining gold labels for training and testing of the systems for automatic emotion detection differ significantly from one study to another, and pose the question of reliability of gold labels and obtained classification results. This study systematically explores several ways for obtaining gold labels for Ekman's emotion model on Twitter data and the influence of the chosen strategy on the manual classification results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا