Do you want to publish a course? Click here

Opinions Mining in Twitter

تحليل الآراء في تويتر

2545   4   99   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

We bring the data from the social networking site Twitter pages, and then we have worked on cleaning and processing operation to the text of for the classification process texts retrieved contain a lot of noise and information is useful for the process of analyzing the views, such as advertisements and links and e-mail addresses and the presence of many words that do not affect the general orientation of the text, and then get all the publications in the Twitter page and what are the comments about each tweets is intended to know the proportion of supporters and opponents of this publication. We apply Naïve Bayes algorithm in classification, we had the appropriate training, and after passing Posts and comments data (opinions), we got good results on the ratio of supporters of the post and the percentage of his opponents.


Artificial intelligence review:
Research summary
تناول البحث تحليل الآراء في تويتر باستخدام تقنيات التنقيب في البيانات، حيث تم استخدام خوارزمية بايز لتصنيف التغريدات إلى آراء إيجابية وسلبية. بدأ البحث بجمع البيانات من تويتر، ثم تم تنظيف النصوص من الضجيج والمعلومات غير المفيدة مثل الإعلانات والروابط. بعد ذلك، تم تطبيق خوارزمية بايز على النصوص المصنفة مسبقاً للحصول على نسبة المؤيدين والمعارضين لكل تغريدة. أظهرت النتائج دقة تصل إلى 97% في تصنيف الآراء، مما يعكس فعالية الخوارزمية المستخدمة. كما اقترح الباحث تطوير التطبيق ليشمل لغات أخرى مثل العربية وتحليل الآراء في مواقع تواصل اجتماعي أخرى مثل فيسبوك ويوتيوب.
Critical review
دراسة نقدية: يعتبر البحث خطوة هامة في مجال تحليل الآراء باستخدام تقنيات التنقيب في البيانات، إلا أنه يفتقر إلى التعامل مع النصوص المكتوبة باللغة العربية، وهي لغة مهمة لملايين المستخدمين. كما أن الاعتماد على خوارزمية بايز فقط قد يكون محدوداً في التعامل مع النصوص التي تحتوي على مشاعر متناقضة. كان من الأفضل تضمين خوارزميات أخرى مثل الشبكات العصبية لتحسين دقة التصنيف. بالإضافة إلى ذلك، يمكن تحسين البحث بتوسيع نطاقه ليشمل مواقع تواصل اجتماعي أخرى لتقديم صورة أشمل عن الآراء.
Questions related to the research
  1. ما هي الخوارزمية المستخدمة في البحث لتحليل الآراء؟

    تم استخدام خوارزمية بايز لتحليل وتصنيف الآراء في التغريدات.

  2. ما هي نسبة دقة النتائج التي توصل إليها البحث؟

    توصل البحث إلى نسبة دقة تصل إلى 97% في تصنيف الآراء.

  3. ما هي الخطوات التي تم اتباعها في تنظيف النصوص قبل التصنيف؟

    تم تنظيف النصوص من الضجيج والمعلومات غير المفيدة مثل الإعلانات والروابط وعناوين البريد الإلكتروني.

  4. ما هي التوصيات المستقبلية التي اقترحها الباحث لتطوير البحث؟

    اقترح الباحث تطوير التطبيق ليشمل لغات أخرى مثل العربية وتحليل الآراء في مواقع تواصل اجتماعي أخرى مثل فيسبوك ويوتيوب.


References used
Data Mining Concepts and Techniques Second Edition Jiawei Han and MichelineKamber
H. Tang, S. Tan, X. Cheng, A survey on sentiment detection of reviews, Expert Systems with Applications 36 (7) (2009) 10760 10773
Wilson T, Wiebe J, Hoffman P. Recognizing contextual polarity in phrase-level sentiment analysis
rate research

Read More

Opinion polls have been the bridge between public opinion and politicians in elections. However, developing surveys to disclose people's feedback with respect to economic issues is limited, expensive, and time-consuming. In recent years, social media such as Twitter has enabled people to share their opinions regarding elections. Social media has provided a platform for collecting a large amount of social media data. This paper proposes a computational public opinion mining approach to explore the discussion of economic issues in social media during an election. Current related studies use text mining methods independently for election analysis and election prediction; this research combines two text mining methods: sentiment analysis and topic modeling. The proposed approach has effectively been deployed on millions of tweets to analyze economic concerns of people during the 2012 US presidential election
Twitter data has become established as a valuable source of data for various application scenarios in the past years. For many such applications, it is necessary to know where Twitter posts (tweets) were sent from or what location they refer to. Rese archers have frequently used exact coordinates provided in a small percentage of tweets, but Twitter removed the option to share these coordinates in mid-2019. Moreover, there is reason to suspect that a large share of the provided coordinates did not correspond to GPS coordinates of the user even before that. In this paper, we explain the situation and the 2019 policy change and shed light on the various options of still obtaining location information from tweets. We provide usage statistics including changes over time, and analyze what the removal of exact coordinates means for various common research tasks performed with Twitter data. Finally, we make suggestions for future research requiring geolocated tweets.
Emotion detection from social media posts has attracted noticeable attention from natural language processing (NLP) community in recent years. The ways for obtaining gold labels for training and testing of the systems for automatic emotion detection differ significantly from one study to another, and pose the question of reliability of gold labels and obtained classification results. This study systematically explores several ways for obtaining gold labels for Ekman's emotion model on Twitter data and the influence of the chosen strategy on the manual classification results.
Social media (SM) platforms such as Twitter provide large quantities of real-time data that can be leveraged during mass emergencies. Developing tools to support crisis-affected communities requires available datasets, which often do not exist for lo w resource languages. This paper introduces Kawarith a multi-dialect Arabic Twitter corpus for crisis events, comprising more than a million Arabic tweets collected during 22 crises that occurred between 2018 and 2020 and involved several types of hazard. Exploration of this content revealed the most discussed topics and information types, and the paper presents a labelled dataset from seven emergency events that serves as a gold standard for several tasks in crisis informatics research. Using annotated data from the same event, a BERT model is fine-tuned to classify tweets into different categories in the multi- label setting. Results show that BERT-based models yield good performance on this task even with small amounts of task-specific training data.
The flexibility of the inference process in Variational Autoencoders (VAEs) has recently led to revising traditional probabilistic topic models giving rise to Neural Topic Models (NTM). Although these approaches have achieved significant results, sur prisingly very little work has been done on how to disentangle the latent topics. Existing topic models when applied to reviews may extract topics associated with writers' subjective opinions mixed with those related to factual descriptions such as plot summaries in movie and book reviews. It is thus desirable to automatically separate opinion topics from plot/neutral ones enabling a better interpretability. In this paper, we propose a neural topic model combined with adversarial training to disentangle opinion topics from plot and neutral ones. We conduct an extensive experimental assessment introducing a new collection of movie and book reviews paired with their plots, namely MOBO dataset, showing an improved coherence and variety of topics, a consistent disentanglement rate, and sentiment classification performance superior to other supervised topic models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا