Do you want to publish a course? Click here

Exploring Reliability of Gold Labels for Emotion Detection in Twitter

استكشاف موثوقية الملصقات الذهبية للكشف عن المشاعر في تويتر

433   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Emotion detection from social media posts has attracted noticeable attention from natural language processing (NLP) community in recent years. The ways for obtaining gold labels for training and testing of the systems for automatic emotion detection differ significantly from one study to another, and pose the question of reliability of gold labels and obtained classification results. This study systematically explores several ways for obtaining gold labels for Ekman's emotion model on Twitter data and the influence of the chosen strategy on the manual classification results.



References used
https://aclanthology.org/
rate research

Read More

Emotion detection is an important task that can be applied to social media data to discover new knowledge. While the use of deep learning methods for this task has been prevalent, they are black-box models, making their decisions hard to interpret fo r a human operator. Therefore, in this paper, we propose an approach using weighted k Nearest Neighbours (kNN), a simple, easy to implement, and explainable machine learning model. These qualities can help to enhance results' reliability and guide error analysis. In particular, we apply the weighted kNN model to the shared emotion detection task in tweets from SemEval-2018. Tweets are represented using different text embedding methods and emotion lexicon vocabulary scores, and classification is done by an ensemble of weighted kNN models. Our best approaches obtain results competitive with state-of-the-art solutions and open up a promising alternative path to neural network methods.
In this paper, we describe experiments designed to evaluate the impact of stylometric and emotion-based features on hate speech detection: the task of classifying textual content into hate or non-hate speech classes. Our experiments are conducted for three languages -- English, Slovene, and Dutch -- both in in-domain and cross-domain setups, and aim to investigate hate speech using features that model two linguistic phenomena: the writing style of hateful social media content operationalized as function word usage on the one hand, and emotion expression in hateful messages on the other hand. The results of experiments with features that model different combinations of these phenomena support our hypothesis that stylometric and emotion-based features are robust indicators of hate speech. Their contribution remains persistent with respect to domain and language variation. We show that the combination of features that model the targeted phenomena outperforms words and character n-gram features under cross-domain conditions, and provides a significant boost to deep learning models, which currently obtain the best results, when combined with them in an ensemble.
Stance detection (SD) entails classifying the sentiment of a text towards a given target, and is a relevant sub-task for opinion mining and social media analysis. Recent works have explored knowledge infusion supplementing the linguistic competence a nd latent knowledge of large pre-trained language models with structured knowledge graphs (KGs), yet few works have applied such methods to the SD task. In this work, we first perform stance-relevant knowledge probing on Transformers-based pre-trained models in a zero-shot setting, showing these models' latent real-world knowledge about SD targets and their sensitivity to context. We then train and evaluate new knowledge-enriched stance detection models on two Twitter stance datasets, achieving state-of-the-art performance on both.
There has been increasing demand to develop effective computer-assisted language training (CAPT) systems, which can provide feedback on mispronunciations and facilitate second-language (L2) learners to improve their speaking proficiency through repea ted practice. Due to the shortage of non-native speech for training the automatic speech recognition (ASR) module of a CAPT system, the corresponding mispronunciation detection performance is often affected by imperfect ASR. Recognizing this importance, we in this paper put forward a two-stage mispronunciation detection method. In the first stage, the speech uttered by an L2 learner is processed by an end-to-end ASR module to produce N-best phone sequence hypotheses. In the second stage, these hypotheses are fed into a pronunciation model which seeks to faithfully predict the phone sequence hypothesis that is most likely pronounced by the learner, so as to improve the performance of mispronunciation detection. Empirical experiments conducted a English benchmark dataset seem to confirm the utility of our method.
In this paper, we introduce a new English Twitter-based dataset for cyberbullying detection and online abuse. Comprising 62,587 tweets, this dataset was sourced from Twitter using specific query terms designed to retrieve tweets with high probabiliti es of various forms of bullying and offensive content, including insult, trolling, profanity, sarcasm, threat, porn and exclusion. We recruited a pool of 17 annotators to perform fine-grained annotation on the dataset with each tweet annotated by three annotators. All our annotators are high school educated and frequent users of social media. Inter-rater agreement for the dataset as measured by Krippendorff's Alpha is 0.67. Analysis performed on the dataset confirmed common cyberbullying themes reported by other studies and revealed interesting relationships between the classes. The dataset was used to train a number of transformer-based deep learning models returning impressive results.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا