Do you want to publish a course? Click here

Building Scheme Of Digital Image Authentication Using Steganography & Perceptual Hashing Techniques

بناء مخطط مصادقة الصور الرقميّة باستخدام تقنيات إخفاء المعلومات و البعثرة الادراكية

1498   2   32   0.0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Recently، digital image authentication technologies have gained much attention because of their importance in many multimedia applications. In general digital images are transmitted over unsaved media such as the internet and many types of computer networks. Applications may require a large amount of safety such as military applications and medical applications. Therefore the digital images must be protected against any modifications، which may lead to influence the decisions that associated with them. In this paper، a general scheme based on Steganography & Perceptual Image Hashing techniques was proposed to enhance the security of digital image transmission. In the final test stage, we checked the accuracy of the proposed scheme against potential modifications was studied, by applying different levels of compression and changing the contrast & brightness level of the image. For analyzing the final results, we computed the matching ratio between the original hash vector and the embedded hash vector. As a result، we achieved a near perfect match ratio even after applying the image compression level or changing its brightness level (approximately 99.9%), while the match ratio decreased significantly with the increase of the contrast level of the image (approximately 94%).


Artificial intelligence review:
Research summary
تتناول هذه الدراسة بناء مخطط مصادقة للصور الرقمية باستخدام تقنيات إخفاء المعلومات (التورية) والبعثرة الإدراكية. تهدف هذه التقنيات إلى حماية الصور الرقمية من التعديلات غير المصرح بها التي قد تؤثر على القرارات المرتبطة بها، خاصة في التطبيقات العسكرية والطبية. تم اختبار المخطط المقترح من خلال تطبيق ضغط الصورة وتغيير مستوى التباين والسطوع، وأظهرت النتائج نسبة تطابق شبه مثالية بين شعاع البعثرة الأصلي والمضمن حتى بعد تطبيق هذه التعديلات، مما يعزز من فعالية المخطط في حماية الصور الرقمية. تم استخدام خوارزمية القيمة المتوسطة لاستخلاص شعاع البعثرة، وتم تضمينه في المجال الترددي للصورة باستخدام تحويل DCT، مما يضمن مقاومة المخطط لعمليات الضغط والتعديلات الأخرى.
Critical review
دراسة نقدية: بينما قدمت الدراسة نتائج مشجعة حول فعالية المخطط المقترح في حماية الصور الرقمية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم اختبار المخطط على نطاق واسع من أنواع الصور والتطبيقات المختلفة، مما يحد من تعميم النتائج. ثانياً، لم يتم مناقشة تأثير التعديلات الأخرى مثل التدوير أو القص بشكل كافٍ. وأخيراً، يمكن تحسين الدراسة بإضافة مقارنة مع تقنيات أخرى مشابهة لتوضيح مدى تفوق المخطط المقترح.
Questions related to the research
  1. ما هي التقنيات المستخدمة في المخطط المقترح لحماية الصور الرقمية؟

    تم استخدام تقنيات إخفاء المعلومات (التورية) والبعثرة الإدراكية لحماية الصور الرقمية من التعديلات غير المصرح بها.

  2. ما هي نسبة التطابق التي تم تحقيقها بين شعاع البعثرة الأصلي والمضمن بعد تطبيق ضغط الصورة؟

    تم تحقيق نسبة تطابق شبه مثالية تصل إلى 99.9% بعد تطبيق ضغط الصورة.

  3. ما هي الخوارزمية المستخدمة لاستخلاص شعاع البعثرة في الدراسة؟

    تم استخدام خوارزمية القيمة المتوسطة لاستخلاص شعاع البعثرة.

  4. ما هي التعديلات التي تم اختبار المخطط المقترح ضدها؟

    تم اختبار المخطط ضد تعديلات مثل ضغط الصورة وتغيير مستوى التباين والسطوع.


References used
SCHNEIDER، M. ; CHANG، S.F: A robust content based digital signature for image authentication. In Proceedings of the International Conference on Image Processing (ICIP)، IEEE ،vol. 3، Sept. 1996، 227-230
ZAUNER،C، Implementation and Benchmarking of Perceptual Image Hash Functions(Master Thesis)، Austria،2010
GHOSHAL،N; MANDAL،J. Image Authentication Technique in Frequency Domain based on Discrete Fourier Transformation. ICCS journal، India،2010،144-150
rate research

Read More

This Paper offers an effective method to measure the length of the femur in Fetal Ultrasound Images, it applies a series of steps starting with the reducing amount of noise in these images, and then converted them to a binary form and uses morphol ogical operations to segment the femur and isolate it from the rest of the image objects, then it applies an Edge Detector in order to find the edges of the bone, then uses the Hough Transform to detect straight lines in the image. we apply overlapping for resulted lines on the original image, finally we choose the most significant and longest straight line which is corresponding to the length of the femur. The proposed method facilitates the measurement of the femur without the help of a physician through a series of steps.
In our research we studied and analyzed the different types of methods used for automatic building detection from the satellite images, then, we proposed a general methodology for building detection based on its geometrical boundary features using Hough transform for the rectangular forms.
The amount of digital images that are produced in hospitals is increasing rapidly. Effective medical images can play an important role in aiding in diagnosis and treatment, they can also be useful in the education domain for healthcare students by explaining with these images will help them in their studies, new trends for image retrieval using automatic image classification has been investigated for the past few years. Medical image Classification can play an important role in diagnostic and teaching purposes in medicine. For these purposes different imaging modalities are used. There are many classifications created for medical images using both grey-scale and color medical images. In this paper, different algorithms in every step involved in medical image processing have been studied. One way is the algorithms of preprocessing step such as Median filter [1], Histogram equalization (HE) [2], Dynamic histogram equalization (DHE), and Contrast Limited Adaptive Histogram Equalization (CLAHE). Second way is the Feature Selection and Extraction step [3,4], such as Gray Level Co-occurrence Matrix(GLCM). Third way is the classification techniques step, which is divided into three ways in this paper, first one is texture classification techniques, second one is neural network classification techniques, and the third one is K-Nearest Neighbor classification techniques. In this paper, we have use MRI brain image to determine the area of tumor in brain. The steps started by preprocessing operation to the image before inputting it to algorithm. The image was converted to gray scale, later on remove film artifact using special algorithm, and then remove the Skull portions from the image without effect on white and gray matter of the brain using another algorithm, After that the image enhanced using optimized median filter algorithm and remove Impurities that produced from first and second steps.
في هذا البحث تٌستخدم تقنيات استكشاف الصور كالتجميع و قواعد الاستكشاف لاستكشاف المعرفة من الصورة و أيضاً يستخدم دمج الميزات متعددة الوسائط مثل البصرية و النصية.
The aim of this study, the development of systems and controls set standards and methods of restoration and protection and maintenance to operate this business in the right direction and straighten restoration goals in the right direction away from reconstructive mistakes that we are experiencing as a result of the absence of references and standards reconstructive and especially in our country.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا