Do you want to publish a course? Click here

Analysis study of Content Based Medical Image Retrieval Systems

دراسة تحليلية لأنظمة استرجاع الصور الطبية اعتماداً على المحتوى

1863   1   44   0 ( 0 )
 Publication date 2012
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Content Based Medical Image Retrieval (CBMIR) systems are a new technique which researchers aim to integrate with Computer Aided Diagnosis systems. These systems usually find and retrieve images from a large image-database which have a similar content to a query image. Retrieval is done by extracting the visual features from the query image, formulating them in a features vector, comparing features vector components with those of the images in the database, and then, similarity measures are computed. Based on the similarity measures, images which have a similar content to the query image are retrieved. The introduced analysis study surveys and analyzes the current status of the CBMIR systems, evaluates our findings from this survey, and concludes some specific research directions in this field.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية موضوع أنظمة استرجاع الصور الطبية اعتماداً على المحتوى (CBMIR)، وهي تقنية حديثة تهدف إلى تحسين عملية استرجاع الصور الطبية من قواعد البيانات الضخمة. تعتمد هذه الأنظمة على استخلاص الخصائص البصرية من الصور وصياغتها في متجهات خصائص، ثم تقارن هذه المتجهات بمتجهات الصور المخزنة في قاعدة البيانات لقياس التشابه واسترجاع الصور المشابهة. تقدم الورقة تقييماً للوضع الراهن لهذه الأنظمة من خلال دراسة تحليلية للبحوث المنشورة بين عامي 2000 و2010، وتستعرض المكونات الرئيسة لأي نظام CBMIR، بالإضافة إلى تصنيف الأنظمة إلى أربعة أنواع أساسية: أنظمة استرجاع الصور اعتماداً على النص (TBIR)، أنظمة استرجاع الصور اعتماداً على المحتوى (CBIR)، أنظمة استرجاع الصور اعتماداً على الخصائص الدلالية (SBIR)، وأنظمة استرجاع الصور اعتماداً على الخصائص المركبة (Composite Image Retrieval Systems). كما تناقش الورقة التحديات والصعوبات التي تواجه هذه الأنظمة، مثل صعوبة فهم الهدف من الأنظمة دون تدريب مسبق، وصعوبة التمييز بين وظائف النظام ومتصفح الويب، وعدم كفاية المعرفة الأساسية باستخدام مبادئ الحاسوب لدى خبراء الرعاية الصحية. وتخلص الورقة إلى أن هذه الأنظمة تحتاج إلى تحسينات في عدة مجالات مثل تجزيء الصور، استخلاص الخصائص، وقياس التشابه، لتحقيق أداء أفضل واستجابة أسرع.
Critical review
دراسة نقدية: على الرغم من أن الورقة تقدم تقييماً شاملاً لأنظمة استرجاع الصور الطبية اعتماداً على المحتوى، إلا أنها تفتقر إلى تقديم أمثلة عملية واضحة لتطبيقات هذه الأنظمة في السياق الطبي اليومي. كما أن الدراسة تعتمد بشكل كبير على البحوث المنشورة بين عامي 2000 و2010، مما قد يجعلها غير محدثة بما يكفي لتعكس التطورات الحديثة في هذا المجال. بالإضافة إلى ذلك، لم تتناول الورقة بشكل كافٍ التحديات المتعلقة بأمان البيانات وخصوصية المرضى، وهي قضايا حيوية في التطبيقات الطبية. من الجيد أن يتم تضمين دراسات حالة أو تجارب ميدانية لتوضيح فعالية هذه الأنظمة في البيئات الطبية الحقيقية.
Questions related to the research
  1. ما هي المكونات الرئيسة لأي نظام استرجاع الصور الطبية اعتماداً على المحتوى؟

    تشمل المكونات الرئيسة لأي نظام استرجاع الصور الطبية اعتماداً على المحتوى: استخلاص الخصائص البصرية، فهرسة الصور، محرك الاسترجاع، وواجهة تخاطب رسومية (GUI).

  2. ما هي الأنواع الأربعة الأساسية لأنظمة استرجاع الصور الطبية؟

    الأنواع الأربعة الأساسية هي: أنظمة استرجاع الصور اعتماداً على النص (TBIR)، أنظمة استرجاع الصور اعتماداً على المحتوى (CBIR)، أنظمة استرجاع الصور اعتماداً على الخصائص الدلالية (SBIR)، وأنظمة استرجاع الصور اعتماداً على الخصائص المركبة (Composite Image Retrieval Systems).

  3. ما هي التحديات الرئيسية التي تواجه أنظمة استرجاع الصور الطبية اعتماداً على المحتوى؟

    تشمل التحديات الرئيسية: صعوبة فهم الهدف من الأنظمة دون تدريب مسبق، صعوبة التمييز بين وظائف النظام ومتصفح الويب، عدم كفاية المعرفة الأساسية باستخدام مبادئ الحاسوب لدى خبراء الرعاية الصحية، وتأمين السرعة الكافية لاستجابة النظام.

  4. ما هي الفوائد المحتملة لاستخدام أنظمة استرجاع الصور الطبية اعتماداً على المحتوى؟

    تساعد هذه الأنظمة على تحسين آلية تحليل الصور الطبية وإدارة قواعد البيانات الضخمة، وتساعد أطباء التشخيص الشعاعي على اتخاذ قرارات دقيقة بشأن الحالات المرضية من خلال استرجاع الصور المشابهة وعرض الشروحات المناسبة.


References used
Müller H, Michoux N, Bandon D, Geissbuhler A. (2004) "A review of content-based image retrieval systems in medical applications-clinical benefits and future directions", International Journal of Medical Informatics, vol. 73, pp.1-23
Pinhas, A T, Greenspan H. (2007) "Medical Image Categorization and Retrieval for PACS Using the GMM-KL Framework" Information Technology in Biomedicine, IEEE Transactions on, vol. 11, no. 2, pp. 190-202
Akgül C B, Rubin D L, Napel S, Beaulieu Ch F, Greenspan H, Acar B. (2011) "Content-based image retrieval in radiology: current status and future directions" Journal of digital imaging, vol. 24, no. 2, pp. 208-222
rate research

Read More

هدفنا من خلال هذه الدراسة في إطار المشروع الفصلي للسنة الرابعة إلى إلقاء الضوء على استرجاع الصور من مجموعة كبيرة بالاعتماد على محتوى صورة هدف , و قمنا بتدعيم هذه الدراسة بتطبيق ضمن بيئة الماتلاب لبرنامج بحث عن الصور المشابهة لصورة مدخلة . و قد تركز بحثنا على ميزتين هامتين يكاد لا يخلو منها أي نظام بحث عن الصور بالاعتماد على المحتوى و هما ميزتي الهيستوغرام اللوني و بنية الصورة texture , ووضحنا الخطوات التي يتم في ضوئها عملية الاسترجاع بدءاً من تحليل الصورة و استخلاص شعاع الواصفات الخاص فيها , و مطابقته مع أشعة الميزات الخاصة بالصور الموجودة في قاعدة البيانات ليتم ترتيب الصور بحسب مدى تشابهها من الصورة الهدف . و تطرقت الدراسة إلى استخدام الفضاء اللوني HMMD كبديل للفضاء اللوني RGB لاستخراج واصفات البنية اللونية على اعتبار أنه نموذج لوني موجه بالمستخدم user oriented و بالتالي نضمن أن نحصل على نتائج أفضل ترضي المستخدم . وقمنا بتدعيم الدراسة بعدد من الأشكال و الأمثلة و المخططات التي توضح محتوى الدراسة النظرية و ما قمنا بعمله في التطبيق ضمن بيئة الماتلاب .
Content based 2Dcerebral digital subtraction angiography(DSA) images retrieval system has been built. The systemfinds and retrieves images fromcerebral DSA imagedatabase( Cerebral Sacular Aneurysms) which have a similar content to a query image. R etrieval is done by extracting the visual shape features of cerebral saccular aneurysms from a query image, formulating them in a feature vector, comparing feature vector components with those of the cerebralDSA images in the database. Similarity measures using Euclidian distanceare computed,based on the similarity measures, images which have a similar content to the query image are retrieved. Resolution has been calculated by finding the ratio between cerebral sacular aneurysm area in first retrieved image to cerebral sacular aneurysm area in the query image for the eight query process which have been done, average resolution was 98%. Results indicates that the designed content based image retrieval could be used to calculate unknown cerebral saccular aneurysms area from a cerebral saccular aneurysms database images whose areas are known.
This research describes a system for recognition of handwritten Arabic word without prior segmentation of the word into characters. In this system, the recognition will be happened at two levels. It is evolved basing on OCR (Optical Character Reco gnition), Hidden Markov Model, CBIR(Content Based Image Retrieval), it also involves Mathematical Morphology.
The amount of digital images that are produced in hospitals is increasing rapidly. Effective medical images can play an important role in aiding in diagnosis and treatment, they can also be useful in the education domain for healthcare students by explaining with these images will help them in their studies, new trends for image retrieval using automatic image classification has been investigated for the past few years. Medical image Classification can play an important role in diagnostic and teaching purposes in medicine. For these purposes different imaging modalities are used. There are many classifications created for medical images using both grey-scale and color medical images. In this paper, different algorithms in every step involved in medical image processing have been studied. One way is the algorithms of preprocessing step such as Median filter [1], Histogram equalization (HE) [2], Dynamic histogram equalization (DHE), and Contrast Limited Adaptive Histogram Equalization (CLAHE). Second way is the Feature Selection and Extraction step [3,4], such as Gray Level Co-occurrence Matrix(GLCM). Third way is the classification techniques step, which is divided into three ways in this paper, first one is texture classification techniques, second one is neural network classification techniques, and the third one is K-Nearest Neighbor classification techniques. In this paper, we have use MRI brain image to determine the area of tumor in brain. The steps started by preprocessing operation to the image before inputting it to algorithm. The image was converted to gray scale, later on remove film artifact using special algorithm, and then remove the Skull portions from the image without effect on white and gray matter of the brain using another algorithm, After that the image enhanced using optimized median filter algorithm and remove Impurities that produced from first and second steps.
We present a method for automatic query expansion for cross-lingual information retrieval in the medical domain. The method employs machine translation of source-language queries into a document language and linear regression to predict the retriev al performance for each translated query when expanded with a candidate term. Candidate terms (in the document language) come from multiple sources: query translation hypotheses obtained from the machine translation system, Wikipedia articles and PubMed abstracts. Query expansion is applied only when the model predicts a score for a candidate term that exceeds a tuned threshold which allows to expand queries with strongly related terms only. Our experiments are conducted using the CLEF eHealth 2013--2015 test collection and show %seven source languages and also in the monolingual case. The results show significant improvements in both cross-lingual and monolingual settings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا