تعد أنظمة استرجاع الصور الطبية اعتماداً على المحتوى من التقنيات الحديثة التي يسعى الباحثون إلى تكاملها مع أنظمة التشخيص بمساعدة الحاسوب. تقوم هذه الأنظمة أساساً بإيجاد صور في قاعدة بيانات تضم مجموعة كبيرة من الصور ذات محتوى مشابه لصورة استعلام معينة. يجري الاستعلام عن طريق استخلاص الخصائص البصرية للصورة المعينة و صياغتها في متجه خصائص تَُقارن مكوناته بمتجهات الخصائص للصور الموجودة في قاعدة البيانات و يقاس التشابه، و من ثم تسَترجع الصور التي لها محتوى مشابه لصورة الاستعلام. تقدم هذه الورقة تقييماً للوضع الراهن لأنظمة استرجاع الصور الطبية اعتماداً على المحتوى بناء على دراسة تحليلية للبحوث الحديثة المنشورة، و تخلص إلى استنتاج اتجاهات بحثية محددة في هذا المجال.
Content Based Medical Image Retrieval (CBMIR) systems are a new technique which researchers aim to integrate with Computer Aided Diagnosis systems. These systems usually find and retrieve images from a large image-database which have a similar content to a query image. Retrieval is done by extracting the visual features from the query image, formulating them in a features vector, comparing features vector components with those of the images in the database, and then, similarity measures are computed. Based on the similarity measures, images which have a similar content to the query image are retrieved. The introduced analysis study surveys and analyzes the current status of the CBMIR systems, evaluates our findings from this survey, and concludes some specific research directions in this field.
Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية موضوع أنظمة استرجاع الصور الطبية اعتماداً على المحتوى (CBMIR)، وهي تقنية حديثة تهدف إلى تحسين عملية استرجاع الصور الطبية من قواعد البيانات الضخمة. تعتمد هذه الأنظمة على استخلاص الخصائص البصرية من الصور وصياغتها في متجهات خصائص، ثم تقارن هذه المتجهات بمتجهات الصور المخزنة في قاعدة البيانات لقياس التشابه واسترجاع الصور المشابهة. تقدم الورقة تقييماً للوضع الراهن لهذه الأنظمة من خلال دراسة تحليلية للبحوث المنشورة بين عامي 2000 و2010، وتستعرض المكونات الرئيسة لأي نظام CBMIR، بالإضافة إلى تصنيف الأنظمة إلى أربعة أنواع أساسية: أنظمة استرجاع الصور اعتماداً على النص (TBIR)، أنظمة استرجاع الصور اعتماداً على المحتوى (CBIR)، أنظمة استرجاع الصور اعتماداً على الخصائص الدلالية (SBIR)، وأنظمة استرجاع الصور اعتماداً على الخصائص المركبة (Composite Image Retrieval Systems). كما تناقش الورقة التحديات والصعوبات التي تواجه هذه الأنظمة، مثل صعوبة فهم الهدف من الأنظمة دون تدريب مسبق، وصعوبة التمييز بين وظائف النظام ومتصفح الويب، وعدم كفاية المعرفة الأساسية باستخدام مبادئ الحاسوب لدى خبراء الرعاية الصحية. وتخلص الورقة إلى أن هذه الأنظمة تحتاج إلى تحسينات في عدة مجالات مثل تجزيء الصور، استخلاص الخصائص، وقياس التشابه، لتحقيق أداء أفضل واستجابة أسرع.
Critical review
دراسة نقدية: على الرغم من أن الورقة تقدم تقييماً شاملاً لأنظمة استرجاع الصور الطبية اعتماداً على المحتوى، إلا أنها تفتقر إلى تقديم أمثلة عملية واضحة لتطبيقات هذه الأنظمة في السياق الطبي اليومي. كما أن الدراسة تعتمد بشكل كبير على البحوث المنشورة بين عامي 2000 و2010، مما قد يجعلها غير محدثة بما يكفي لتعكس التطورات الحديثة في هذا المجال. بالإضافة إلى ذلك، لم تتناول الورقة بشكل كافٍ التحديات المتعلقة بأمان البيانات وخصوصية المرضى، وهي قضايا حيوية في التطبيقات الطبية. من الجيد أن يتم تضمين دراسات حالة أو تجارب ميدانية لتوضيح فعالية هذه الأنظمة في البيئات الطبية الحقيقية.
Questions related to the research
-
ما هي المكونات الرئيسة لأي نظام استرجاع الصور الطبية اعتماداً على المحتوى؟
تشمل المكونات الرئيسة لأي نظام استرجاع الصور الطبية اعتماداً على المحتوى: استخلاص الخصائص البصرية، فهرسة الصور، محرك الاسترجاع، وواجهة تخاطب رسومية (GUI).
-
ما هي الأنواع الأربعة الأساسية لأنظمة استرجاع الصور الطبية؟
الأنواع الأربعة الأساسية هي: أنظمة استرجاع الصور اعتماداً على النص (TBIR)، أنظمة استرجاع الصور اعتماداً على المحتوى (CBIR)، أنظمة استرجاع الصور اعتماداً على الخصائص الدلالية (SBIR)، وأنظمة استرجاع الصور اعتماداً على الخصائص المركبة (Composite Image Retrieval Systems).
-
ما هي التحديات الرئيسية التي تواجه أنظمة استرجاع الصور الطبية اعتماداً على المحتوى؟
تشمل التحديات الرئيسية: صعوبة فهم الهدف من الأنظمة دون تدريب مسبق، صعوبة التمييز بين وظائف النظام ومتصفح الويب، عدم كفاية المعرفة الأساسية باستخدام مبادئ الحاسوب لدى خبراء الرعاية الصحية، وتأمين السرعة الكافية لاستجابة النظام.
-
ما هي الفوائد المحتملة لاستخدام أنظمة استرجاع الصور الطبية اعتماداً على المحتوى؟
تساعد هذه الأنظمة على تحسين آلية تحليل الصور الطبية وإدارة قواعد البيانات الضخمة، وتساعد أطباء التشخيص الشعاعي على اتخاذ قرارات دقيقة بشأن الحالات المرضية من خلال استرجاع الصور المشابهة وعرض الشروحات المناسبة.
References used
Müller H, Michoux N, Bandon D, Geissbuhler A. (2004) "A review of content-based image retrieval systems in medical applications-clinical benefits and future directions", International Journal of Medical Informatics, vol. 73, pp.1-23
Pinhas, A T, Greenspan H. (2007) "Medical Image Categorization and Retrieval for PACS Using the GMM-KL Framework" Information Technology in Biomedicine, IEEE Transactions on, vol. 11, no. 2, pp. 190-202
Akgül C B, Rubin D L, Napel S, Beaulieu Ch F, Greenspan H, Acar B. (2011) "Content-based image retrieval in radiology: current status and future directions" Journal of digital imaging, vol. 24, no. 2, pp. 208-222