Do you want to publish a course? Click here

Using artificial neural networks for short term electrical load forecasting in Tartous province

استخدام الشبكات العصبونية في التنبؤ قصير الأمد بالحمل الكهربائي في محافظة طرطوس

1622   2   49   0.0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

A reliable and continuous supply of electrical energy is necessary for the functioning of today’s complex society. Because of the increasing consumption and the extension of existing electrical transmission networks and these power systems are operated closer and closer to their limits accordingly the possibilities of overloading, equipment failures and blackout are also increasing, furthermore, we have an additional obstacle which is that electrical energy cannot be stored efficiently, so, electrical energy should be generated only when it's needed. Due to the fact that world is facing a lack of oil reserves and the difficulties related to have alternative sources to generate electrical power, then, electrical load forecasting is considered as a crucial factor in electrical power system either from economical or technical point of view on both planning and operating levels. This research introduces a short term electrical load forecasting system by using artificial neural networks with a simulation in Matlab environment in addition to an interface for the system and all that is depending on previous load data and weather parameters in Tartous province.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة أهمية التنبؤ بالحمل الكهربائي قصير الأمد في محافظة طرطوس باستخدام الشبكات العصبونية الاصطناعية. يبرز البحث الحاجة الملحة لتوفير تغذية كهربائية موثوقة ومستدامة في ظل تزايد استهلاك الطاقة وتوسع شبكات التوزيع الكهربائية. يواجه العالم تحديات كبيرة في تأمين مصادر بديلة للطاقة، مما يجعل التنبؤ بالحمل الكهربائي أمراً حاسماً من الناحيتين الاقتصادية والفنية. يقدم البحث نموذجاً للتنبؤ بالحمل الكهربائي باستخدام الشبكات العصبونية مع محاكاة في بيئة ماتلاب، ويعتمد على بيانات الأحمال السابقة ومحددات الطقس. تم تدريب النموذج باستخدام خوارزمية الانتشار الخلفي واختباره على بيانات لم يتم تدريبها مسبقاً، وحقق دقة تنبؤ مقبولة بمتوسط خطأ نسبي مطلق قدره 2.9976%. يوصي البحث بإدخال تقنيات الخوارزمية الوراثية لتحسين دقة التنبؤ في الأبحاث المستقبلية.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو تحسين دقة التنبؤ بالحمل الكهربائي باستخدام الشبكات العصبونية الاصطناعية. ومع ذلك، يمكن أن تكون هناك بعض النقاط التي تحتاج إلى تحسين. على سبيل المثال، يمكن أن تكون البيانات المستخدمة في التدريب محدودة من حيث الفترة الزمنية والموقع الجغرافي، مما قد يؤثر على دقة التنبؤ في حالات أخرى. بالإضافة إلى ذلك، يمكن أن تكون هناك عوامل أخرى مؤثرة على الحمل الكهربائي لم يتم أخذها في الاعتبار، مثل العوامل الاقتصادية والاجتماعية. من الجيد أن يقترح الباحثون استخدام تقنيات أخرى مثل الخوارزمية الوراثية لتحسين دقة التنبؤ، ولكن قد يكون من الأفضل دمج هذه التقنيات في الدراسة الحالية بدلاً من اقتراحها للأبحاث المستقبلية فقط.
Questions related to the research
  1. ما هي أهمية التنبؤ بالحمل الكهربائي في منظومة القدرة الكهربائية؟

    التنبؤ بالحمل الكهربائي يعتبر عاملاً حاسماً في منظومة القدرة الكهربائية سواء من الناحية الاقتصادية أو الفنية، حيث يساعد في جدولة عمليات الصيانة الدورية وتوسيع منشآت التوليد لتلبية الطلب المتزايد.

  2. ما هي المنهجية المستخدمة في هذه الدراسة لتنبؤ الحمل الكهربائي؟

    استخدمت الدراسة الشبكات العصبونية الاصطناعية مع محاكاة في بيئة ماتلاب، وتم تدريب النموذج باستخدام خوارزمية الانتشار الخلفي واختباره على بيانات لم يتم تدريبها مسبقاً.

  3. ما هي دقة التنبؤ التي حققها النموذج المقترح في الدراسة؟

    حقق النموذج المقترح دقة تنبؤ بمتوسط خطأ نسبي مطلق قدره 2.9976%، وهي قيمة مقبولة في التطبيقات العملية.

  4. ما هي التوصيات التي قدمها الباحثون لتحسين دقة التنبؤ في الأبحاث المستقبلية؟

    يوصي الباحثون بإدخال تقنيات الخوارزمية الوراثية لتحسين دقة التنبؤ في الأبحاث المستقبلية.


References used
PAPALEXOPOULOS AD, HESTERBERG TC. A regression-based approach to short-term system load forecasting. IEEE Trans Power Syst 5(4): 1990;1535–1544
SATOH R, TANAKA E, HASEGAWA J. Daily load forecasting using a neural network combined with regression analysis. In: Proc Int Conf Intelligent System Application to Power Systems, vol. 2, Montpellier, France, 5–9 September 1994; 345–352
WANG Y, DAWA GU, JIANPING XU, JING LI, Back propagation neural network for short-term electricity load forecasting with weather features, IEEE, CSDL, Wuhan, China, 2009
rate research

Read More

In this research, We present a scientific advanced developed study and keeping up with new studies and technologies of very short-term electrical load forecasting and applying this study for electrical load forecasting of basic Syrian electrical p ower system by studying this prediction for next four hours according to the criterion applied in the Syrian Electricity Ministry with ten minutes intervals ,we call it "Instant electrical load forecasting".
This research was done to improve the local bitumen specifications 60-70 (Banias refinery output) using Cement Bypass DUST(CBPD) so that it becomes more resistant to high temperatures (Short- Term- Aging), in addition to reduce the harmful waste ma terials. The cement bypass was supplied by Tartous Cement Company and added to bitumen with different percentages namely, 12%, 14%, 16% and 18% (by the weight of bitumen). some experiments were held to determine the properties of modified and unmodified bitumen (Penetration )25, 15, 4(∁°- Ductility- Softening point), then We returned previous experiences after (Loss- on- heating test) and exposure to (Short- Term- Aging) on the modified and unmodified bitumen, and the results were within specification limits, were Compatible with previous reference studies and these additions have to improve the resistance of bitumen to high temperatures. The optimum cement Bypass Dust ratio was found to be 14% of the weight used bitumen.
This paper presents a new technique based on artificial neural networks (ANNs) to correct power factor. A synchronous motor controlled by the neural controller was used to handle the problem of reactive power compensation of the system, in order to correct power factor. In this paper, the electrical system and the neural controller were simulated using MATLAB. The results have shown that the presented technique overcomes the problems in conventional compensators (using static capacitors) such as time delay and step changes of reactive power besides to the fast compensation compared to the technique with capacitors groups.
This paper shows a new approach to determine the presence of defects and to classify the defect type online based on Artificial Neural Networks (ANNs) in electrical power system transmission lines. This algorithm uses current and voltage signals samp led at 1 KHz as an input for the proposed ANNs without the involvement of a moving data window, so input data will be processed as a string of data. The model depends on three neural networks one for each phase and another fourth neural network for the involvement of the ground during the fault. Response time of the classifier is less than 5 ms. Moreover modern power system requires a fast, robust and accurate technique for online processing. Simulation studies show that the proposed technique is able to distinguish the fault type very accurate. Also this technique succeeded in determining of all defect types under all system conditions, so it is 100 percent accurate, so it is suitable for online application.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا