درسنا في هذا البحث قابليّة حلّ معادلة بل في مجموعة الأعداد الصّحيحة ، حيث أعطينا شرطاً لازما و كافياً لقابليّة حلّ هذه المعادلة بالإعتماد على الإيديالات في مرتّبات الحقول التّربيعيّة الحقيقيّة، كما أعطينا صيغة الإيديال المقابل لكلّ حلّ لهذه المعادلة و ذلك من أجل حالات خاصّة .
In this paper , we will study the ability to solve Pell's equation in the
set Z, we give necessary and sufficient conditions to solve this equation , depending on the
ideals in orders of the real quadratic fields .We also introduce the formula of the opposite
ideal for every solution of this equation , in special cases.
Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية دراسة معادلة بل من الشكل x² - Ay² = N في مجموعة الأعداد الصحيحة Z. يقدم الباحثون شروطًا لازمة وكافية لحل هذه المعادلة بالاعتماد على الإيديالات في مرتبات الحقول التربيعية الحقيقية. كما يقدمون صيغة الإيديال المقابل لكل حل لهذه المعادلة في حالات خاصة لـ N و A. تهدف الدراسة إلى تقديم فهم أعمق للعلاقة بين حلول معادلة بل والإيديالات النظامية المبهمة في المرتبات التربيعية، مع التركيز على حالات خاصة لـ N و Δ. تعتمد الدراسة على تصنيف الإيديالات النظامية المبهمة وقابلية حل المعادلة باستخدام نظريات الحقول التربيعية والإيديالات. النتائج التي توصلت إليها الدراسة تشمل شروطًا لازمة وكافية لحل معادلة بل وصيغة الإيديال المقابل لكل حل في حالات محددة. توصي الدراسة بمزيد من البحث في قابلية حل معادلة بل في حالات أكثر عمومية باستخدام نظريات الإيديالات في المرتبات التربيعية.
Critical review
دراسة نقدية: تعتبر هذه الورقة البحثية إضافة قيمة إلى الأدبيات العلمية في مجال الرياضيات، حيث تقدم شروطًا لازمة وكافية لحل معادلة بل باستخدام نظريات الحقول التربيعية والإيديالات. ومع ذلك، يمكن توجيه بعض النقد البنّاء لتحسين العمل المستقبلي. أولاً، الدراسة تركز بشكل كبير على حالات خاصة لـ N و A، مما يحد من تعميم النتائج. يمكن أن يكون من المفيد توسيع نطاق الدراسة لتشمل حالات أكثر عمومية. ثانيًا، الورقة تعتمد بشكل كبير على النظريات الرياضية المعقدة، مما قد يجعلها صعبة الفهم للقراء غير المتخصصين. يمكن تحسين الورقة بإضافة أمثلة توضيحية وتفسيرات مبسطة لبعض المفاهيم المعقدة. أخيرًا، يمكن أن تكون هناك حاجة لمزيد من التجارب العملية أو التطبيقات العملية لتأكيد صحة النتائج النظرية المقدمة في الورقة.
Questions related to the research
-
ما هي معادلة بل التي تمت دراستها في هذه الورقة؟
معادلة بل التي تمت دراستها هي من الشكل x² - Ay² = N في مجموعة الأعداد الصحيحة Z.
-
ما هي الشروط اللازمة والكافية لحل معادلة بل وفقًا لهذه الدراسة؟
الشروط اللازمة والكافية لحل معادلة بل تعتمد على الإيديالات في مرتبات الحقول التربيعية الحقيقية، وتختلف باختلاف حالات N و A.
-
ما هي أهمية هذه الدراسة في مجال الرياضيات؟
أهمية هذه الدراسة تكمن في تقديم شروط لازمة وكافية لحل معادلة بل وصيغة الإيديال المقابل لكل حل، مما يساهم في فهم أعمق للعلاقة بين حلول المعادلة والإيديالات النظامية المبهمة.
-
ما هي التوصيات التي قدمتها الدراسة لمزيد من البحث؟
توصي الدراسة بمزيد من البحث في قابلية حل معادلة بل في حالات أكثر عمومية باستخدام نظريات الإيديالات في المرتبات التربيعية.
References used
ANDREESCU, T., ANDRICA, D., Quadratic Diophantine Equations, Springer, New York, London, 2015
BOLKER, E. D. Elementary Number Theory, An Algebraic Approach, W. A. Bedjamin, Inc. New York, 1970
COVILL. E., JAVAHERI, M., KRYLO. N., On the Subgroup Generated by Solutions of Pell’s Equation, Arxiv: 1609.00440vol.1, math. NT, 2Sep,2016
In this paper, we introduce an algorithm to solve the
Advection equation by finite element method. In this method, we
have chosen Three pattern of cubic B-Spline to approximate the
nonlinear solution to convert the nonlinear PDE into a system of
In this work, we studied Pell equations X2 - DY2 = ±2. We showed when both
of these equations are solvable, and we found the necessary and sufficient
condition for the solubility of each one by the continued fractions and the
concept of the central norm.
In this paper , we will define multiple orthogonal vector of Diophantine
equation on specific conditions. We will solve the Diophantine equation
with this vector in ternary number system and develop special
relationships for it , {0,1,2} , then w
In this research we study the numerical solution of Burgere
equation by using three methods, The first explicit scheme
method, and the second Crank-Nicolson method, and the thirst
weighted average method for explicit scheme method and Crank-
Nicolson method, Also the studying of numerical stability of all this
methods.
In this article, we used the generalized Hamilton-Jacoby equation to study the
relative motion of the electron in the arbitrary electromagnetic field, depending on
the action function(the principle of the least action), taking into account the
rel