Do you want to publish a course? Click here

Algorithm to solve nonlinear Advection Equation numerically using cubic Bspline

خوارزمية لحل معادلة الحمل غير الخطية بطريقة عددية باستخدام توابع B-spline التكعيبية

2240   0   55   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we introduce an algorithm to solve the Advection equation by finite element method. In this method, we have chosen Three pattern of cubic B-Spline to approximate the nonlinear solution to convert the nonlinear PDE into a system of ODE, Then we solved this system equation by SSP-RK54 method, And we made a program implementing this algorithm and we checked the program using some examples, which have exact solutions, then we evaluate our results. As a conclusion we found that this method gives accurate results for advection equation.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية تطوير خوارزمية لحل معادلة الحمل غير الخطية باستخدام طريقة العناصر المنتهية وتوابع B-Spline التكعيبية. يتم تحويل معادلة الحمل إلى جملة معادلات تفاضلية عادية باستخدام ثلاثة أنماط من توابع B-Spline التكعيبية، ثم يتم حل هذه الجملة باستخدام طريقة SSP-RK54. تم تنفيذ الخوارزمية على مجموعة من الأمثلة التي لها حلول تحليلية معروفة، وتم حساب الخطأ لتقييم جودة الطريقة. أظهرت النتائج أن الطريقة تعطي حلولاً تقريبية جيدة لمسألة الحمل.
Critical review
دراسة نقدية: تقدم الورقة البحثية حلاً مبتكراً لمعادلة الحمل غير الخطية باستخدام توابع B-Spline التكعيبية، وهو ما يعتبر إضافة قيمة في مجال الحلول العددية للمعادلات التفاضلية الجزئية. ومع ذلك، يمكن تحسين الورقة من خلال تقديم تحليل أعمق للنتائج ومقارنتها بطرق أخرى معروفة في الأدبيات. كما أن الورقة تفتقر إلى مناقشة تفصيلية حول تأثير اختيار المعلمات المختلفة على دقة الحلول. بالإضافة إلى ذلك، يمكن تحسين الورقة من خلال تضمين المزيد من الأمثلة العملية والتطبيقات الواقعية التي يمكن أن تستفيد من هذه الطريقة.
Questions related to the research
  1. ما هي الطريقة المستخدمة في تحويل معادلة الحمل إلى جملة معادلات تفاضلية عادية؟

    تم استخدام ثلاثة أنماط من توابع B-Spline التكعيبية لتحويل معادلة الحمل إلى جملة معادلات تفاضلية عادية.

  2. ما هي الطريقة العددية المستخدمة لحل جملة المعادلات التفاضلية العادية الناتجة؟

    تم استخدام طريقة SSP-RK54 لحل جملة المعادلات التفاضلية العادية الناتجة.

  3. كيف تم تقييم جودة الطريقة المقترحة في الورقة؟

    تم تقييم جودة الطريقة من خلال حساب الخطأ المرتكب عند تطبيق الخوارزمية على مجموعة من الأمثلة التي لها حلول تحليلية معروفة.

  4. ما هي النتائج التي توصلت إليها الورقة بخصوص فعالية الطريقة المقترحة؟

    أظهرت النتائج أن الطريقة تعطي حلولاً تقريبية جيدة لمسألة الحمل، مما يشير إلى فعالية الطريقة المقترحة.


References used
ARORA G, SINGH BK,-2013-Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method. Appl Math Comput ,224,166–77
BAKODAH HO, 2016-A Comparative Study of Two Spatial Discretization Schemes for Advection equation. International Journal of Modern Nonlinear Theory and Application, 5, 59-66
BELLMAN R, KASHEF BG, CASTI J,1972- Differential quadrature: a technique for the rapid solution of nonlinear differential equations. J Comput Phy, 10,40–52
rate research

Read More

In this paper, we present approximate solutions for the Advection equation by finite differences method. In this method we convert the nonlinear partial differential equation into a system of nonlinear equations by some finite differences methods. Then this system was solved by Newton's method. And we made a program implementing this algorithm and we checked the program using some examples, which have exact solutions, then we evaluate our results. As a conclusion we found that this method gives accurate results for Advection equation.
This work deals with a new method for solving Integer Linear Programming Problems depending on a previous methods for solving these problems, such that Branch and Bound method and Cutting Planes method where this new method is a combination between t hem and we called it Cut and Branch method. The reasons which led to this combination between Cutting Planes method and Branch and Bound method are to defeat from the drawbacks of both methods and especially the big number of iterations and the long time for the solving and getting of a results between the results of these methods where the Cut and Branch method took the good properties from the both methods. And this work deals with solving a one problem of Integer Linear Programming Problems by Branch and Bound method and Cutting Planes method and the new method, and we made a programs on the computer for solving ten problems of Integer Linear Programming Problems by these methods then we got a good results and by that, the new method (Cut and Branch) became a good method for solving Integer Linear Programming Problems. The combination method which we doing in this research opened a big and wide field in solving Integer Linear Programming Problems and finding the best solutions for them where we did the combination method again between the new method (Cut and Branch) and the Cutting Planes method then we got a new method with a very good results and solutions.
In this paper, we comparison of some approximate solutions for the Advection equation. This solutions built on numerical methods to obtain approximate others, depending on two different ways; the first is Finite Difference Methods, using Crank-Nic holson Method, and Implicit Logarithmic Finite Differences Method, and second is The Finite Elements Methods, throw modified cubic BSpline differential quadrature method using types for Basis functions (MCBDQM), (EMCB-DQM), and (Expo-MCB-DQM).
We study in this paper the possibility of contribution in solving the vehicle routing problem (VRP) by using the improved ant colony system ( IACS) , which is one of the optimization problems that, because of its Real Life applications, has attracted a lot of attention at the present time. It is a problem of the NP-hard type. However, because of the complication of polynomial time there is still no algorithm providing us with the optimal solution of this problem. All the used algorithms give solutions that are close to the optimal one . We present the improved ant colony system algorithm that, based on ant colony system algorithm, possesses a new state transition rule, a new pheromone updating rule and diverse local search approaches . The experimental results of the proposed ( IACS) algorithm compared with the results of well-known standard tests show that our IACS yields better solutions than the other ant algorithms in the literature and is competitive with other meta-heuristic approaches in terms of quality(run time and number of good solutions ).
In this paper, we present a numerical algorithm for solving linear integro differential Volterra-Friedholm equations by using spline polynomials of degree ninth with six collocation points. The Fredholm-Volterra equation is converted into a system of first-order linear differential equations, which is solved by applying polynomials and their derivatives with collocation points. The convergence of the proposed method is demonstrated when it is applied to above problem. To test the effectiveness and accuracy of this method, two test problems were resolved where comparisons could be used with other results taken from recent references to the high resolution provided by spline approximations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا