Do you want to publish a course? Click here

Weighted Average Method of Solution of Burgere Equation

طريقة المتوسّط الموزون لحل معادلة برجر

825   2   32   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this research we study the numerical solution of Burgere equation by using three methods, The first explicit scheme method, and the second Crank-Nicolson method, and the thirst weighted average method for explicit scheme method and Crank- Nicolson method, Also the studying of numerical stability of all this methods.


Artificial intelligence review:
Research summary
يتناول هذا البحث دراسة نظرية للحل العددي لمعادلة برجر باستخدام ثلاث طرق: الطريقة الصريحة، وطريقة كرانك نيكلسون، وطريقة المتوسط الموزون التي تجمع بين الطريقتين السابقتين. كما يتضمن البحث دراسة الاستقرارية العددية لكل من هذه الطرق. النتائج الرئيسية التي توصل إليها البحث هي أن الطريقة الصريحة مستقرة بشرط معين، بينما طريقة كرانك نيكلسون مستقرة بدون شروط، أما طريقة المتوسط الموزون فهي مستقرة بشرط محدد. يهدف البحث إلى تحسين أداء الطرق العددية لحل معادلات تفاضلية جزئية، ويقدم توصيات بتطبيق هذه الطرق على أنواع أخرى من المعادلات التفاضلية الجزئية.
Critical review
دراسة نقدية: يقدم البحث مساهمة قيمة في مجال الحلول العددية لمعادلة برجر، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن تقديم المزيد من الأمثلة العملية لتوضيح كيفية تطبيق الطرق المختلفة على مشاكل حقيقية. ثانياً، لم يتم مناقشة تأثير تغيير المعاملات المختلفة على استقرارية الحلول بشكل كافٍ. وأخيراً، كان من الممكن تقديم مقارنة أكثر تفصيلاً بين الطرق الثلاث من حيث الكفاءة والدقة.
Questions related to the research
  1. ما هي الطرق الثلاث التي تم استخدامها لحل معادلة برجر في هذا البحث؟

    الطرق الثلاث هي الطريقة الصريحة، وطريقة كرانك نيكلسون، وطريقة المتوسط الموزون التي تجمع بين الطريقتين السابقتين.

  2. ما هي النتائج الرئيسية التي توصل إليها البحث فيما يتعلق باستقرارية الطرق المستخدمة؟

    الطريقة الصريحة مستقرة بشرط معين، بينما طريقة كرانك نيكلسون مستقرة بدون شروط، أما طريقة المتوسط الموزون فهي مستقرة بشرط محدد.

  3. ما هو الهدف الرئيسي من هذا البحث؟

    الهدف الرئيسي هو تحسين أداء الطرق العددية لحل معادلات تفاضلية جزئية، وحل معادلة برجر باستخدام الطرق الثلاث المذكورة، فضلاً عن دراسة الحالة الاستقرارية لكل طريقة.

  4. ما هي التوصيات التي قدمها البحث؟

    يوصي البحث بتطبيق الطرق العددية المستخدمة على أنواع أخرى من المعادلات التفاضلية الجزئية.


References used
Kakuda.K and N.Tosaka,1990- The generalized boundary element approach to burrger's equation. International J. for Numerical Methods in Engineering,Vol.29,245-261P
Estevez.P,G,1994-Non classical symmetries and the singular manifold method the burgers and burgers huxley equations. J.Phys.A Math.Gen,Vol.27,2113-2127P
Zhaug D.S.G.W.Wei and D.J.Kouri and Q.K.Hoffman,1997- Burger's Equation with High Reynolds Number. J.Phys.Fluid,1853-1855P
rate research

Read More

In this paper, we introduce an algorithm to solve the Advection equation by finite element method. In this method, we have chosen Three pattern of cubic B-Spline to approximate the nonlinear solution to convert the nonlinear PDE into a system of ODE, Then we solved this system equation by SSP-RK54 method, And we made a program implementing this algorithm and we checked the program using some examples, which have exact solutions, then we evaluate our results. As a conclusion we found that this method gives accurate results for advection equation.
In this paper , we will study the ability to solve Pell's equation in the set Z, we give necessary and sufficient conditions to solve this equation , depending on the ideals in orders of the real quadratic fields .We also introduce the formula of the opposite ideal for every solution of this equation , in special cases.
In this paper we offer a new interactive method for solving Multiobjective linear programming problems. This method depends on forming the model for reducing the relative deviations of objective functions from their ideal standard, and dealing with the unsatisfying deviations of objective functions by reacting with decision maker. The results obtained from using this method were compared with many interactive methods as (STEM Method[6] – Improvement STEM Method[7] – Matejas-peric Method[8]). Numerical results indicate that the efficiency of purposed method comparing with the obtained results by using that methods at initial solution point and the other interactive points with decision maker.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا