Do you want to publish a course? Click here

Synchronization Improvement of FHSS Systems

تحسين التزامن في أنظمة نثر الطيف بالقفز الترددي

816   0   34   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
تناقش هذه الأطروحة تحسين تزامن أنظمة القفز الترددي (FHSS) في مجال معالجة الإشارة ضمن نظم الاتصالات. تتناول الدراسة أهمية التزامن في أنظمة القفز الترددي، حيث يتم تغيير تردد الإشارة بشكل شبه عشوائي لتجنب التشويش والاعتراض. يتم تقسيم أنظمة القفز الترددي إلى نوعين: القفز الترددي البطيء (SFH) والقفز الترددي السريع (FFH). تركز الدراسة على تحسين آليات التزامن الخشن والدقيق في هذه الأنظمة لضمان فعالية الاتصال وتقليل احتمالية فقدان البيانات. تتناول الدراسة أيضًا تأثير التشويش على هذه الأنظمة وطرق تحسين كشف الإشارة واستعادة الساعة والمعطيات باستخدام تقنيات مختلفة مثل الإعتيان الفائض الأعمى (BO-CDR) وتقنيات أخرى. تم تنفيذ محاكاة للنظام المقترح ومقارنته بالطرق التقليدية، حيث أظهرت النتائج تحسنًا في الأداء وسماحية أكبر للارتعاش.
Critical review
تعتبر هذه الأطروحة مساهمة قيمة في مجال تحسين تزامن أنظمة القفز الترددي، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن توضيح بعض المفاهيم التقنية بشكل أكثر تفصيلاً لتسهيل فهمها من قبل القراء غير المتخصصين. ثانيًا، لم يتم تناول بعض التحديات العملية التي قد تواجه تنفيذ النظام المقترح في بيئات حقيقية بشكل كافٍ. وأخيرًا، كان من الممكن تقديم مزيد من الدراسات المقارنة مع أنظمة أخرى مشابهة للحصول على صورة أشمل عن فعالية النظام المقترح.
Questions related to the research
  1. ما هي أهمية التزامن في أنظمة القفز الترددي؟

    التزامن في أنظمة القفز الترددي مهم لضمان وصول الإشارات المرسلة إلى المستقبل بتوافق دقيق في موضع القفز الحالي، مما يساعد في فك نثر المعلومات المرغوبة ونثر الإشارات غير المرغوبة، وبالتالي الحفاظ على فعالية النظام.

  2. ما هي أنواع أنظمة القفز الترددي التي تم تناولها في الدراسة؟

    تم تناول نوعين من أنظمة القفز الترددي في الدراسة: القفز الترددي البطيء (SFH) والقفز الترددي السريع (FFH).

  3. ما هي التقنية التي تم اقتراحها لتحسين كشف الإشارة واستعادة الساعة والمعطيات؟

    تم اقتراح تقنية الإعتيان الفائض الأعمى (BO-CDR) لتحسين كشف الإشارة واستعادة الساعة والمعطيات، حيث تعتمد هذه التقنية على أخذ عدة عينات ضمن كل بت من إشارة المعطيات المستقبلة واختيار العينة الأقرب لمركز العين لاستعادة المعطيات.

  4. ما هي النتائج التي أظهرتها المحاكاة للنظام المقترح مقارنة بالطرق التقليدية؟

    أظهرت المحاكاة للنظام المقترح تحسنًا في الأداء وسماحية أكبر للارتعاش مقارنة بالطرق التقليدية، مما يشير إلى فعالية النظام المقترح في تحسين تزامن أنظمة القفز الترددي.


References used
Poisel, “Modern communications Jamming Principles and techniques,” 2nd Edition, Artech house, 2011
M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt “Spread spectrum communications: Volume III,” Computer Science Press: Maryland, USA, 1985
D. Torrieri, “Principles of Spread-Spectrum Communication Systems”, 1st Edition, Springer, 2005
rate research

Read More

Recommendation systems are the systems thathelp users to select suitable items from a large collection of items based on their tastes and interests. Such systems have become one of the most powerful tools in electronic commerce and social websites . Nonetheless , using these systems in e-commerce websites faces many drawbacks such as: cold start-up, scalability and sparsity. In this paper, we present a solution to cold-start-up problem, and compare between many association rule algorithms to select the most suitable one to solve the scalability and sparsity problems.
The speech recognition is one of the most modern technologies, which entered force in various fields of life, whether medical or security or industrial techniques. Accordingly, many related systems were developed, which differ from each otherin fea ture extraction methods and classification methods. In this research,three systems have been created for speech recognition.They differ from each other in the used methods during the stage of features extraction.While the first system used MFCC algorithm, the second system used LPCC algorithm, and the third system used PLP algorithm.All these three systems used HMM as classifier. At the first, the performance of the speechrecognitionprocesswas studied and evaluatedfor all the proposedsystems separately. After that, the combination algorithm was applied separately on eachpair of the studied system algorithmsin order to study the effect of using the combination algorithm onthe improvement of the speech recognition process. Twokinds of errors(simultaneous errors and dependent errors) were usedto evaluate the complementaryof each pair of the studied systems, and to study the effectiveness of the combination on improving the performance of speech recognition process. It can be seen from the results of the comparison that the best improvement ratio of speech recognition has been obtained in the case of collection MFCC and PLP algorithms with recognition ratio of 93.4%.
Educational data mining aims to study the available data in the educational field and extract the hidden knowledge from it in order to benefit from this knowledge in enhancing the education process and making successful decisions that will improve th e student’s academic performance. This study proposes the use of data mining techniques to improve student performance prediction. Three classification algorithms (Naïve Bayes,J48, Support Vector Machine) were applied to the student performance database, and then a new classifier was designed to combine the results of those individual classifiers using Voting Method. The WEKA tool was used, which supports a lot of data mining algorithms and methods. The results show that the ensemble classifier has the highest accuracy for predicting students' levels compared to other classifiers, as it has achieved a recognition accuracy of 74.8084%. The simple k-means clustering algorithm was useful in grouping similar students into separate groups, thus understanding the characteristics of each group, which helps to lead and direct each group separately.
In dialog systems, the Natural Language Understanding (NLU) component typically makes the interpretation decision (including domain, intent and slots) for an utterance before the mentioned entities are resolved. This may result in intent classificati on and slot tagging errors. In this work, we propose to leverage Entity Resolution (ER) features in NLU reranking and introduce a novel loss term based on ER signals to better learn model weights in the reranking framework. In addition, for a multi-domain dialog scenario, we propose a score distribution matching method to ensure scores generated by the NLU reranking models for different domains are properly calibrated. In offline experiments, we demonstrate our proposed approach significantly outperforms the baseline model on both single-domain and cross-domain evaluations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا