في أنظمة الحوار، يقوم مكون فهم اللغة الطبيعي (NLU) عادة بقرار التفسير (بما في ذلك المجال، النية والفتحات) عن كلام قبل حل الكيانات المذكورة.قد ينتج عن هذا أخطاء تصنيف النوايا وعلامات الفتحة.في هذا العمل، نقترح نفايات ميزات دقة الكيان (ER) في NLU Reranking وإدخال مصطلح خسائر رواية بناء على إشارات إيه لتحسين تعلم الأوزان النموذجية في إطار إعادة النشر.بالإضافة إلى ذلك، للحصول على سيناريو حوار متعدد المجالات، نقترح طريقة مطابقة توزيع النتيجة لضمان درجات الناتجة عن نماذج Reranking NLU من النطاقات المختلفة معايرة بشكل صحيح.في التجارب دون اتصال بالإنترنت، نوضح نهجنا المقترح تفوق بشكل كبير على نموذج خط الأساس على كل من تقييمات المجال الواحدة والعبر.
In dialog systems, the Natural Language Understanding (NLU) component typically makes the interpretation decision (including domain, intent and slots) for an utterance before the mentioned entities are resolved. This may result in intent classification and slot tagging errors. In this work, we propose to leverage Entity Resolution (ER) features in NLU reranking and introduce a novel loss term based on ER signals to better learn model weights in the reranking framework. In addition, for a multi-domain dialog scenario, we propose a score distribution matching method to ensure scores generated by the NLU reranking models for different domains are properly calibrated. In offline experiments, we demonstrate our proposed approach significantly outperforms the baseline model on both single-domain and cross-domain evaluations.
References used
https://aclanthology.org/
While named entity recognition (NER) from speech has been around as long as NER from written text has, the accuracy of NER from speech has generally been much lower than that of NER from text. The rise in popularity of spoken dialog systems such as S
The lack of labeled training data for new features is a common problem in rapidly changing real-world dialog systems. As a solution, we propose a multilingual paraphrase generation model that can be used to generate novel utterances for a target feat
When building machine translation systems, one often needs to make the best out of heterogeneous sets of parallel data in training, and to robustly handle inputs from unexpected domains in testing. This multi-domain scenario has attracted a lot of re
Incorporating external knowledge sources effectively in conversations is a longstanding problem in open-domain dialogue research. The existing literature on open-domain knowledge selection is limited and makes certain brittle assumptions on knowledge
Named entity disambiguation (NED), which involves mapping textual mentions to structured entities, is particularly challenging in the medical domain due to the presence of rare entities. Existing approaches are limited by the presence of coarse-grain