Do you want to publish a course? Click here

Improving Decision Support Systems in Education Systems Using Data Mining and Machine Learning Techniques

تحسين أنظمة دعم القرار في نظم التعليم باستخدام تقنيات التنقيب عن البيانات و التعلم الآلي

1359   2   5   0.0 ( 0 )
 Publication date 2021
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Educational data mining aims to study the available data in the educational field and extract the hidden knowledge from it in order to benefit from this knowledge in enhancing the education process and making successful decisions that will improve the student’s academic performance. This study proposes the use of data mining techniques to improve student performance prediction. Three classification algorithms (Naïve Bayes,J48, Support Vector Machine) were applied to the student performance database, and then a new classifier was designed to combine the results of those individual classifiers using Voting Method. The WEKA tool was used, which supports a lot of data mining algorithms and methods. The results show that the ensemble classifier has the highest accuracy for predicting students' levels compared to other classifiers, as it has achieved a recognition accuracy of 74.8084%. The simple k-means clustering algorithm was useful in grouping similar students into separate groups, thus understanding the characteristics of each group, which helps to lead and direct each group separately.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة استخدام تقنيات التنقيب عن البيانات والتعلم الآلي لتحسين نظم دعم القرار في المجال التعليمي. الهدف الرئيسي هو استخراج المعرفة المخفية من البيانات التعليمية لتعزيز عملية التعليم واتخاذ قرارات ناجحة لتحسين الأداء الأكاديمي للطلاب. تم تطبيق ثلاث خوارزميات تصنيف (Naïve Bayes, J48, Support Vector Machine) على قاعدة بيانات أداء الطلاب، ثم تم تصميم مصنف جديد لدمج نتائج تلك المصنفات باستخدام تقنية الدمج Voting Method. أظهرت النتائج أن مصنف الدمج حقق أعلى دقة في التنبؤ بمستويات الطلاب بنسبة 74.8084%. كما استخدمت خوارزمية العنقدة simple k-means لتجميع الطلاب في مجموعات منفصلة، مما يساعد في فهم مميزات كل مجموعة وتوجيهها بشكل أفضل. تم استخدام أداة WEKA لدعم العديد من خوارزميات وطرائق التنقيب في البيانات. الدراسة تبرز أهمية استخدام تقنيات التنقيب عن البيانات والتعلم الآلي في تحسين عملية اتخاذ القرار في نظم التعليم الجامعي.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو تحسين نظم دعم القرار في التعليم باستخدام تقنيات التنقيب عن البيانات والتعلم الآلي. ومع ذلك، يمكن توجيه بعض النقد البناء لتحسين العمل المستقبلي. أولاً، نسبة الدقة التي تم تحقيقها (74.8084%) تعتبر جيدة ولكنها ليست مثالية، مما يشير إلى الحاجة لمزيد من التحسينات في النموذج المستخدم. ثانياً، الدراسة اعتمدت فقط على مجموعة بيانات واحدة، مما قد يحد من تعميم النتائج على سياقات تعليمية أخرى. ثالثاً، لم يتم التطرق بشكل كافٍ إلى تأثير العوامل الاجتماعية والاقتصادية على أداء الطلاب، وهو ما يمكن أن يكون له تأثير كبير. وأخيراً، يمكن تحسين الدراسة من خلال استخدام تقنيات تنقيب بيانات وخوارزميات تعلم آلي أخرى قد تكون أكثر فعالية.
Questions related to the research
  1. ما الهدف الرئيسي من استخدام تقنيات التنقيب عن البيانات في هذه الدراسة؟

    الهدف الرئيسي هو استخراج المعرفة المخفية من البيانات التعليمية لتعزيز عملية التعليم واتخاذ قرارات ناجحة لتحسين الأداء الأكاديمي للطلاب.

  2. ما هي الخوارزميات التي تم استخدامها في تصنيف أداء الطلاب؟

    تم استخدام ثلاث خوارزميات تصنيف هي: Naïve Bayes, J48, Support Vector Machine.

  3. ما هي الأداة التي تم استخدامها لدعم خوارزميات التنقيب عن البيانات في الدراسة؟

    تم استخدام أداة WEKA لدعم العديد من خوارزميات وطرائق التنقيب في البيانات.

  4. ما هي نسبة الدقة التي حققها مصنف الدمج في التنبؤ بمستويات الطلاب؟

    حقق مصنف الدمج نسبة دقة بلغت 74.8084%.


References used
OLUKOYA,B. Single Classifiers and Ensemble Approach for Predicting Student’s Academic Performance, International Journal of Research and Scientific Innovation (IJRSI) , Volume VII, Issue VI, June 2020 , 238 – 2 43 .
SINGH,R. and PAL,S. Machine Learning Algorithms and Ensemble Technique to Improve Prediction of Students Performance, International Journal of Advanced Trends in Computer Science and Engineering, Vol 9, No 3,2020, 3970 - 39 7 6
rate research

Read More

This research presents literature review on using Artificial intelligence and Data Mining techniques in Anti Money Laundering systems. We compare many methodologies used in different research papers with the purpose of shedding some light on real life applications using Artificial intelligence
In recent years, time-critical processing or real-time processing and analytics of bid data have received a significant amount of attentions. There are many areas/domains where real-time processing of data and making timely decision can save thousand s of human lives, minimizing the risks of human lives and resources, enhance the quality of human lives, enhance the chance of profitability, efficient resources management etc. This paper has presented such type of real-time big data analytic applications and a classification of those applications. In addition, it presents the time requirements of each type of these applications along with its significant benefits. Also, a general overview of big data to describe a background knowledge on this scope.
In this article, we propose a mathematical model, fundamentally based on evidence theory in order to process and to combine the information elements coming from different sources of information in a security system. These elements could be heteroge neous (qualitative, quantitative, ordinal, binary … etc.) and imperfect (imprecise, ambiguous, probable, missing values … etc.). Along with the heterogeneity and the imperfection, we must consider the case bases that contain security cases with solutions to help us to make decisions as supplementary sources of information (this is called in machine learning field ''case-based reasoning''). Furthermore, the proposed method must consider the conflict and the contradictory resulting from the different sources of evidence. The afore-mentioned issues will be explained through an illustrative numeric example to clarify the proposed model.
The use of traditional methods to analyze massive amounts of data sets is not conducive to the discovery of new knowledge patterns supports the decision-making process So the purpose of this article is designed visual analysis system that supports analysis of data sets through the use of automated analysis, which includes many of the techniques such as assembly process (clustering) and Altnsnev (classification) and the correlation base (association Rule) And the process of visual data exploration techniques Manifesting, and then the comparison with other data sets manifestation techniques and evaluation of the proposed Manifesting system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا