Do you want to publish a course? Click here

New Interactive Method for Solving Multiobjective Linear Programming Problems

طريقة تفاعلية جديدة لحل مسائل البرمجة الخطية متعددة الأهداف

1612   0   32   0.0 ( 0 )
 Publication date 2017
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we offer a new interactive method for solving Multiobjective linear programming problems. This method depends on forming the model for reducing the relative deviations of objective functions from their ideal standard, and dealing with the unsatisfying deviations of objective functions by reacting with decision maker. The results obtained from using this method were compared with many interactive methods as (STEM Method[6] – Improvement STEM Method[7] – Matejas-peric Method[8]). Numerical results indicate that the efficiency of purposed method comparing with the obtained results by using that methods at initial solution point and the other interactive points with decision maker.


Artificial intelligence review:
Research summary
في هذا البحث، يقدم الدكتور زياد فَنايه والدكتور محمد مزيد دريباتي وائل ناصر طريقة تفاعلية جديدة لحل مسائل البرمجة الخطية متعددة الأهداف. تعتمد هذه الطريقة على تشكيل نموذج لتخفيض الانحرافات النسبية لدوال الأهداف عن قيمها المعيارية المثالية، والتفاعل مع متخذ القرار لمعالجة الانحرافات غير المرضية. تم مقارنة النتائج التي تم الحصول عليها باستخدام هذه الطريقة مع عدة طرق تفاعلية أخرى مثل طريقة STEM وطريقة STEM المحسنة وطريقة Matejas-Peric. أظهرت النتائج العددية فعالية الطريقة المقترحة مقارنة بالطرق الأخرى عند نقطة الحل الابتدائي ومختلف نقاط التفاعل مع متخذ القرار. تهدف هذه الطريقة إلى تحسين دوال الأهداف التي يرغب متخذ القرار في تحسينها من خلال تزويده بقيم جديدة مقترحة لبعض دوال الأهداف. يتم حل المسألة من جديد بعد كل تفاعل مع متخذ القرار حتى يتم الوصول إلى حل مقنع. تم استخدام العديد من البرامج مثل Excel وMathematica وWinQSB وMatlab لحل نماذج البرمجة الخطية باستخدام الطريقة الجديدة. أظهرت النتائج أن الطريقة المقترحة تحقق نسبة رضا أعلى لمتخذ القرار مقارنة بالطرق الأخرى.
Critical review
دراسة نقدية: تعد الطريقة التفاعلية الجديدة التي قدمها الباحثون خطوة مهمة في مجال حل مسائل البرمجة الخطية متعددة الأهداف، حيث تتيح لمتخذ القرار التفاعل بشكل مباشر مع الحلول المقترحة وتحسينها وفقًا لتفضيلاته. ومع ذلك، قد تواجه هذه الطريقة تحديات في التطبيقات العملية بسبب الحاجة المستمرة لتفاعل متخذ القرار، مما قد يزيد من تعقيد العملية ويطيل من زمن الوصول إلى الحل النهائي. بالإضافة إلى ذلك، قد تكون الطريقة أقل فعالية في الحالات التي تتطلب حلًا سريعًا دون الحاجة إلى تفاعلات متكررة. يمكن تحسين البحث من خلال تقديم دراسات حالة عملية توضح كيفية تطبيق الطريقة في بيئات حقيقية وتقييم أدائها مقارنة بالطرق التقليدية في تلك البيئات.
Questions related to the research
  1. ما هي الفكرة الأساسية للطريقة التفاعلية الجديدة المقدمة في البحث؟

    تعتمد الطريقة التفاعلية الجديدة على تشكيل نموذج لتخفيض الانحرافات النسبية لدوال الأهداف عن قيمها المعيارية المثالية، والتفاعل مع متخذ القرار لمعالجة الانحرافات غير المرضية.

  2. ما هي الطرق التفاعلية الأخرى التي تم مقارنتها مع الطريقة الجديدة؟

    تم مقارنة الطريقة الجديدة مع طريقة STEM، طريقة STEM المحسنة، وطريقة Matejas-Peric.

  3. ما هي البرامج التي يمكن استخدامها لحل نماذج البرمجة الخطية باستخدام الطريقة الجديدة؟

    يمكن استخدام برامج مثل Excel وMathematica وWinQSB وMatlab لحل نماذج البرمجة الخطية باستخدام الطريقة الجديدة.

  4. ما هي التحديات المحتملة التي قد تواجه الطريقة التفاعلية الجديدة في التطبيقات العملية؟

    قد تواجه الطريقة تحديات في التطبيقات العملية بسبب الحاجة المستمرة لتفاعل متخذ القرار، مما قد يزيد من تعقيد العملية ويطيل من زمن الوصول إلى الحل النهائي.


References used
SUGA ,K , .KATO ,S , .and HIYAMA ,K“ , .Structural analysis of Paretooptimal solution sets for multi-objective optimization: An application to outer window design problems using Multiple Objective Genetic Algorithms .”Building and Environment ,vol. 45, 2010, pp. 1144-1152
GHAZNAVI-GHOSONI ,B.A ,and KHORRAM ,E“ .On approximating weakly/properly efficient solutions in multi-objective programming .” Mathematical and Computer Modelling ,vol. 54, 2011 ,pp. 3172-3181
ZELENY ,M“ ,.Multiple Criteria Decision Making ,”McGraw-Hill, Inc., USA, 1982
rate research

Read More

This work deals with a new method for solving Integer Linear Programming Problems depending on a previous methods for solving these problems, such that Branch and Bound method and Cutting Planes method where this new method is a combination between t hem and we called it Cut and Branch method. The reasons which led to this combination between Cutting Planes method and Branch and Bound method are to defeat from the drawbacks of both methods and especially the big number of iterations and the long time for the solving and getting of a results between the results of these methods where the Cut and Branch method took the good properties from the both methods. And this work deals with solving a one problem of Integer Linear Programming Problems by Branch and Bound method and Cutting Planes method and the new method, and we made a programs on the computer for solving ten problems of Integer Linear Programming Problems by these methods then we got a good results and by that, the new method (Cut and Branch) became a good method for solving Integer Linear Programming Problems. The combination method which we doing in this research opened a big and wide field in solving Integer Linear Programming Problems and finding the best solutions for them where we did the combination method again between the new method (Cut and Branch) and the Cutting Planes method then we got a new method with a very good results and solutions.
In this paper, spline collocation method is considered for solving two forms of problems. The first form is general linear sixth-order boundary-value problem (BVP), and the second form is nonlinear sixth-order initial value problem (IVP). The existen ce, uniqueness, error estimation and convergence analysis of purpose methods are investigated. The study shows that proposed spline method with three collocation points can find the spline solutions and their derivatives up to sixth-order of the two BVP and IVP, thus is very effective tools in numerically solving such problems. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested techniques.
In this paper, a spline collocation method is developed for finding numerical solutions of general linear eighth-order boundary-value problems (BVPs) and nonlinear eighth-order initial value problems (IVPs). The presented collocation method affords t he spline solution by the polynomial of degree eleventh which satisfies the BVPs and IVPs at three collocation points. The study shows that the spline collocation method when is applied such this problems is existent and unique. Moreover, the purposed method if applied to these systems will be consistent and the global truncation error equal eleventh. Numerical results are given for four examples to illustrate the implementation and efficiency of the method. Comparisons of the results obtained by the present method with results obtained by the other methods reveal that the present method is very effective and convenient.
This paper presents an interactive solution method for treating multi objective mathematical programming problems with fuzzy parameters in the objective functions and in the constraints. Theses fuzzy parameters are characterized by fuzzy numbers. For such problems, the concept of a-Pareto optimality introduced by extending the ordinary Pareto optimality based on the a-level sets of fuzzy numbers. The proposed solution method is based on cutting planes, which are based on local trade off ratios between the objective functions as prescribed by the decision maker at each iterate generated by the method. An illustrative numerical example is given to clarity this method.
Multi-objective evolutionary algorithms are used in a wide range of fields to solve the issues of optimization, which require several conflicting objectives to be considered together. Basic evolutionary algorithm algorithms have several drawbacks, such as lack of a good criterion for termination, and lack of evidence of good convergence. A multi-objective hybrid evolutionary algorithm is often used to overcome these defects.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا