Do you want to publish a course? Click here

Designing a control unit for suspension system in quarter car model using Extended Adaptive Neuro Fuzzy Inference System

تصميم وحدة تحكم لنظام التعليق في نموذج ربع المركبة باستخدام نظام الاستدلال العصبي الضبابي المتكيف الموسع

1689   0   41   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Suspension system is considered one of the most important components of modern automobiles as it is the responsible for the vehicle’s stability, balance and safety. The presence of robust controller is very necessary in order to ensure full interaction between suspension components and making accurate decisions at the right time. This paper proposes to design an Extended Adaptive Neuro Fuzzy Inference System (EANFIS) controller for suspension system in quarter car model. The proposed controller is used as decision maker In order to contribute in absorbing shocks caused by bumpy roads, and to prevent vibrations from reaching the cockpit. Furthermore, it provides stability and coherence required to reduce the discomfort felt by passengers, which arises from road roughness, which in turn, improve the road handling. The MATLAB Simulink is used to simulate the proposed controller with the controlled model and to display the responses of the controlled model under different types of disturbance. In addition, a comparison between EANFIS controller, Fuzzy controller and open loop model (passive suspension) was done with different types of disturbance on order to evaluate the performance of the proposed model. Controller has shown excelled performance in terms of reducing displacements, velocity and acceleration.


Artificial intelligence review:
Research summary
تعتبر أنظمة التعليق من أهم المكونات في المركبات الحديثة، حيث تلعب دوراً حيوياً في توفير الراحة والأمان للركاب. يهدف هذا البحث إلى تصميم وحدة تحكم لنظام التعليق في نموذج ربع المركبة باستخدام نظام الاستدلال العصبي الضبابي المتكيف الموسع (EANFIS). يهدف المتحكم المقترح إلى تحسين استقرار المركبة على الطرقات من خلال تقليل الاهتزازات وامتصاص الصدمات الناتجة عن عدم استواء الطريق. تم تطبيق المتحكم على نموذج ربع المركبة ودراسة استجابة النظام عند حدوث اضطرابات مختلفة. أظهرت النتائج أن المتحكم EANFIS يتفوق على المتحكم الضبابي التقليدي والنموذج الرياضي ذو الحلقة المفتوحة من حيث تقليل الإزاحات وسرعة الاهتزاز وتسارعه. تم استخدام بيئة MATLAB Simulink لمحاكاة المتحكم وعرض استجابات النموذج تحت أنواع مختلفة من الاضطرابات. أظهرت النتائج أن المتحكم EANFIS يساهم بشكل كبير في تحسين أداء نظام التعليق من خلال تقليل تسارع الاهتزاز وسرعته والإزاحات الناتجة عن الاضطرابات المختلفة.
Critical review
دراسة نقدية: يعتبر البحث خطوة مهمة نحو تحسين أنظمة التعليق في المركبات، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، النموذج المستخدم هو نموذج ربع المركبة، وهو نموذج بسيط نسبياً ولا يعكس تعقيدات النظام الكامل للمركبة. لذلك، قد تكون النتائج غير دقيقة عند تطبيقها على نظام التعليق الكامل. ثانياً، لم يتم اختبار المتحكم على أنواع أخرى من الأنظمة غير نظام التعليق، مما يحد من تعميم النتائج. ثالثاً، على الرغم من أن المتحكم EANFIS أظهر أداءً جيداً، إلا أن تعقيد النظام وزيادة عدد الطبقات قد يؤديان إلى زيادة في وقت الحسابات ومتطلبات الذاكرة. لذلك، من المهم إجراء دراسات إضافية لاختبار أداء المتحكم على نماذج أكثر تعقيداً وتحليل تأثير زيادة عدد الطبقات على الأداء العام للنظام.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو تصميم وحدة تحكم لنظام التعليق في نموذج ربع المركبة باستخدام نظام الاستدلال العصبي الضبابي المتكيف الموسع (EANFIS) لتحسين استقرار المركبة وتقليل الاهتزازات وامتصاص الصدمات الناتجة عن عدم استواء الطريق.

  2. ما هي الأدوات المستخدمة في محاكاة المتحكم؟

    تم استخدام بيئة MATLAB Simulink لمحاكاة المتحكم وعرض استجابات النموذج تحت أنواع مختلفة من الاضطرابات.

  3. ما هي النقاط التي يمكن تحسينها في البحث؟

    يمكن تحسين البحث من خلال اختبار المتحكم على نظام التعليق الكامل بدلاً من نموذج ربع المركبة، واختبار المتحكم على أنواع أخرى من الأنظمة غير نظام التعليق، وتحليل تأثير زيادة عدد الطبقات في نظام EANFIS على الأداء العام للنظام.

  4. ما هي الفوائد التي يقدمها المتحكم EANFIS مقارنة بالمتتحكم الضبابي التقليدي؟

    المتحكم EANFIS يتفوق على المتحكم الضبابي التقليدي من حيث تقليل الإزاحات وسرعة الاهتزاز وتسارعه، كما أنه يظهر قدرة أكبر على التكيف مع التغيرات في الدخل وتعديل شكل ونوع تابع العضوية بشكل مناسب.


References used
FARD, H., SAMADI, F. Active Suspension System Control Using Adaptive Neuro Fuzzy (ANFIS) Controller,International Journal of Engineering.Vol.28,No.3, 2015,396-401
WEIHUA, LI., HAIPING, D. An adaptive Neuro fuzzy hybrid control strategy for a semi active suspension with magneto rheological damper. Hindawi Publishing Corporation. Vol. 3,No.4, 2014, 71-82
HEIDARI, M., HOMAEI, H. Design a PID Controller for Suspension System by Back Propagation Neural Network. Journal of Engineering. Vol.13,No.1, 2013, 1-9
rate research

Read More

This research aims to produce a diagnosis system for breast cancer by using Neural Network depending on Back Propagation algorithm(BPNN) and Adaptive Neuro Fuzzy Inference System ‘ANFIS’, the both of studies was done using structural features of b iopsies in “Wisconson Breast Cancer “data base. In the end a comparison was made between the two studies of malignant- benign classification of breast masses of breast cancer which has accuracy 95,95% with BPNN and 91.9% with ANFIS system, this results can be consider very important if they compared with researches depending on image features that obtained of various devises like mammography, magnetic resonance.
One ofa car's suspension system functions is to isolate vibrations resulting from road on the driver and ensure a comfortable ride. But the design of control systems for semi-active suspension systems is difficult because of the non-linearity of the constituent elements of these systems which make the researches related to it characterized by complexity. So in order to improve the performance of semi-active suspension systems without bearing the effort of designing a model based controller, a control system is designed using self-organizing fuzzy controller based on the principle of delay-in-penalty to control a semi-active suspension system which uses a magneto rheological damper. The controller tries to enhance system performance using the desired response as it is described in the penalty table. The fuzzy logic controller is based on two inputs namely sprung mass velocity and unsprung mass velocity. Using a quarter car model with 2 degree-of-freedom the system is modeled and simulated in MATLAB &Simulink® and the results are compared to the widely used sky-hook strategy. the simulation showed the ability of the self-organizing fuzzy controller to provide good results in minimizing sprung mass acceleration in variousroad profiles compared to sky-hookstrategy.
Evapotranspiration is an important component of the hydrologic cycle, and the accurate prediction of this parameter is very important for many water resources applications. Thus, the aim of this study is prediction of monthly reference evapotranspiration using Artificial Neural Networks (ANNs) and fuzzy inference system (FIS).
In this paper, a problem of ride comfort enhancement in a moving vehicle was introduced and controlled by damping force to deduce vibration caused by road profile. Sliding mode control was used to give the damping force in two degree of freedom su spension system. A mechanic model of suspension system was given, dampers and springs were used for passive damping to reduce chattering and sliding mode control for semi-active control with proposed method by using supervised fuzzy logic control for chattering decreasing was designed. A simulation with the given initial conditions was designed using Matlab/Simulink. By computing of root mean square error we got that the proposed method gave the best responses with the smallest chattering compared with traditional mechanical damping and sliding mode control. All results plotted using Matlab/Simulink.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا