تعتبر أنظمة التعليق من أهم المكونات في المركبات الحديثة كما أنها تعد أهم عوامل الراحة و الأمان فيها لذلك كان لابد من تأمين متحكم يضمن التفاعل الكامل بين مكونات نظام التعليق و يساعد في اتخاذ القرارات الدقيقة في الوقت المناسب, يقترح البحث تصميم متحكم باستخدام نظام الاستدلال العصبي الضبابي المكيف الموسع (EANFIS) و استخدامه كوحدة اتخاذ قرار في نظام التعليق لنموذج ربع المركبة بغاية المحافظة على ثبات المركبة على الطرقات لتأمين راحة الركاب حيث يقوم بتحقيق دقة في اتخاذ القرار للمساهمة في تخفيض الاهتزازات و امتصاص الصدمات الناتجة عن عدم استواء الطريق و بالتالي يمنع وصولها إلى مقصورة القيادة و يؤمن الثبات و التماسك المطلوب تم تطبيق المتحكم على نموذج ربع المركبة و دراسة استجابة النموذج في حال حدوث اضطرابات مختلفة و مقارنة أداء المتحكم مع متحكم يعتمد على نظام الاستدلال الضبابي و مع استجابة النموذج الرياضي ذو الحلقة المفتوحة بوجود اضطرابات دخل مختلفة و قد أظهر المتحكم تفوقاً في الأداء من حيث تخفيض الإزاحات و سرعة الاهتزاز و تسارعه.
Suspension system is considered one of the most important components of modern
automobiles as it is the responsible for the vehicle’s stability, balance and safety. The
presence of robust controller is very necessary in order to ensure full interaction between
suspension components and making accurate decisions at the right time. This paper
proposes to design an Extended Adaptive Neuro Fuzzy Inference System (EANFIS)
controller for suspension system in quarter car model. The proposed controller is used as
decision maker In order to contribute in absorbing shocks caused by bumpy roads, and to
prevent vibrations from reaching the cockpit. Furthermore, it provides stability and
coherence required to reduce the discomfort felt by passengers, which arises from road
roughness, which in turn, improve the road handling. The MATLAB Simulink is used to
simulate the proposed controller with the controlled model and to display the responses of
the controlled model under different types of disturbance. In addition, a comparison
between EANFIS controller, Fuzzy controller and open loop model (passive suspension)
was done with different types of disturbance on order to evaluate the performance of the
proposed model. Controller has shown excelled performance in terms of reducing
displacements, velocity and acceleration.
Artificial intelligence review:
Research summary
تعتبر أنظمة التعليق من أهم المكونات في المركبات الحديثة، حيث تلعب دوراً حيوياً في توفير الراحة والأمان للركاب. يهدف هذا البحث إلى تصميم وحدة تحكم لنظام التعليق في نموذج ربع المركبة باستخدام نظام الاستدلال العصبي الضبابي المتكيف الموسع (EANFIS). يهدف المتحكم المقترح إلى تحسين استقرار المركبة على الطرقات من خلال تقليل الاهتزازات وامتصاص الصدمات الناتجة عن عدم استواء الطريق. تم تطبيق المتحكم على نموذج ربع المركبة ودراسة استجابة النظام عند حدوث اضطرابات مختلفة. أظهرت النتائج أن المتحكم EANFIS يتفوق على المتحكم الضبابي التقليدي والنموذج الرياضي ذو الحلقة المفتوحة من حيث تقليل الإزاحات وسرعة الاهتزاز وتسارعه. تم استخدام بيئة MATLAB Simulink لمحاكاة المتحكم وعرض استجابات النموذج تحت أنواع مختلفة من الاضطرابات. أظهرت النتائج أن المتحكم EANFIS يساهم بشكل كبير في تحسين أداء نظام التعليق من خلال تقليل تسارع الاهتزاز وسرعته والإزاحات الناتجة عن الاضطرابات المختلفة.
Critical review
دراسة نقدية: يعتبر البحث خطوة مهمة نحو تحسين أنظمة التعليق في المركبات، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، النموذج المستخدم هو نموذج ربع المركبة، وهو نموذج بسيط نسبياً ولا يعكس تعقيدات النظام الكامل للمركبة. لذلك، قد تكون النتائج غير دقيقة عند تطبيقها على نظام التعليق الكامل. ثانياً، لم يتم اختبار المتحكم على أنواع أخرى من الأنظمة غير نظام التعليق، مما يحد من تعميم النتائج. ثالثاً، على الرغم من أن المتحكم EANFIS أظهر أداءً جيداً، إلا أن تعقيد النظام وزيادة عدد الطبقات قد يؤديان إلى زيادة في وقت الحسابات ومتطلبات الذاكرة. لذلك، من المهم إجراء دراسات إضافية لاختبار أداء المتحكم على نماذج أكثر تعقيداً وتحليل تأثير زيادة عدد الطبقات على الأداء العام للنظام.
Questions related to the research
-
ما هو الهدف الرئيسي من البحث؟
الهدف الرئيسي من البحث هو تصميم وحدة تحكم لنظام التعليق في نموذج ربع المركبة باستخدام نظام الاستدلال العصبي الضبابي المتكيف الموسع (EANFIS) لتحسين استقرار المركبة وتقليل الاهتزازات وامتصاص الصدمات الناتجة عن عدم استواء الطريق.
-
ما هي الأدوات المستخدمة في محاكاة المتحكم؟
تم استخدام بيئة MATLAB Simulink لمحاكاة المتحكم وعرض استجابات النموذج تحت أنواع مختلفة من الاضطرابات.
-
ما هي النقاط التي يمكن تحسينها في البحث؟
يمكن تحسين البحث من خلال اختبار المتحكم على نظام التعليق الكامل بدلاً من نموذج ربع المركبة، واختبار المتحكم على أنواع أخرى من الأنظمة غير نظام التعليق، وتحليل تأثير زيادة عدد الطبقات في نظام EANFIS على الأداء العام للنظام.
-
ما هي الفوائد التي يقدمها المتحكم EANFIS مقارنة بالمتتحكم الضبابي التقليدي؟
المتحكم EANFIS يتفوق على المتحكم الضبابي التقليدي من حيث تقليل الإزاحات وسرعة الاهتزاز وتسارعه، كما أنه يظهر قدرة أكبر على التكيف مع التغيرات في الدخل وتعديل شكل ونوع تابع العضوية بشكل مناسب.
References used
FARD, H., SAMADI, F. Active Suspension System Control Using Adaptive Neuro Fuzzy (ANFIS) Controller,International Journal of Engineering.Vol.28,No.3, 2015,396-401
WEIHUA, LI., HAIPING, D. An adaptive Neuro fuzzy hybrid control strategy for a semi active suspension with magneto rheological damper. Hindawi Publishing Corporation. Vol. 3,No.4, 2014, 71-82
HEIDARI, M., HOMAEI, H. Design a PID Controller for Suspension System by Back Propagation Neural Network. Journal of Engineering. Vol.13,No.1, 2013, 1-9
An ANFIS controller also designed and a comparison
between proposed controller, ANFIS controller and open loop model
had made with different types of disturbance.
This research aims to produce a diagnosis system for breast cancer by using Neural
Network depending on Back Propagation algorithm(BPNN) and Adaptive Neuro Fuzzy
Inference System ‘ANFIS’, the both of studies was done using structural features of
b
One ofa car's suspension system functions is to isolate vibrations resulting from road on the driver and ensure a comfortable ride. But the design of control systems for semi-active suspension systems is difficult because of the non-linearity of the
Evapotranspiration is an important component of the
hydrologic cycle, and the accurate prediction of this parameter is
very important for many water resources applications. Thus, the
aim of this study is prediction of monthly reference
evapotranspiration using Artificial Neural Networks (ANNs) and
fuzzy inference system (FIS).
In this paper, a problem of ride comfort enhancement in a moving
vehicle was introduced and controlled by damping force to deduce
vibration caused by road profile. Sliding mode control was used to
give the damping force in two degree of freedom su