Do you want to publish a course? Click here

Linear Systems Analysis Methods

طرائق تحليل الأنظمة الخطية بمصفوفات معاملات غير كثيفة

1180   0   6   0 ( 0 )
 Publication date 1998
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we consider the properties of linear systems by means of directed graphs and numerical structures. We also state efficient algorithms for determining an approximate number of the non-zero terms within determinants' expressions of their matrices. The stated algorithms make use of trees representing numerical structures which contains the indices of the nonzero terms. This paper yields interesting results used in practical engineering applications which include linear systems with sparse matrices, for example: networks, electronic circuits, earth velocities boxes (gearboxes), multi-works systems ...etc.

References used
ايرامس، تحليل دارات الآلات الالكترونية بوساطة البيانات، دار مير، موسكو 1986
ف.س.لينسكي وأ.يو.سشكوف، مراقبة الخواص الهندسية لعلب السرع الأرضية، مجلة التقانات . الحاسوبية لبناء الآلات، مينسك، 1972
أ.يو.سشكوف، بيانات الآلات المسننة، لينغراد ١٩٨٣
rate research

Read More

This paper presents a method for finding online adaptive optimal controllers for continuous-time linear systems without knowing the system dynamical matrices. The proposed method employs one of Intelligent Operations Research Techniques, this tech nique is the adaptive dynamic programming, to iteratively solve the algebraic Riccati equation using the online information of state and input, without requiring the a priori knowledge of the system dynamics. In addition, all iterations can be conducted by using repeatedly the same state and input information on some fixed time intervals. A practical online algorithm is developed in this paper, and is applied to the controller design for a turbocharged diesel engine with exhaust gas recirculation.
In this research, we investigate a problem of controllable and observerable for linear Continuous-time systems. We have founded controllable and observerable conditions for the linear continuous-time system. Moreover, we put out a new algorithm for finding control vector of steps that can enable us to move the state vector from the initial stage x(0) into the final onex(tf) for finite time tf>0, the theoretical results is illustrated by an example. Finally,we put program to plot trajectory of state vector x(t) and observer vector y(t)
In this paper, we present two new methods for finding the numerical solutions of systems of the nonlinear equations. The basic idea depend on founding relationship between minimum of a function and the solution of systems of the nonlinear equatio ns. The first method seeks the numerical solution with a sequence of search directions, which is depended on gradient and Hessian matrix of function, while the second method is based on a sequence of conjugate search directions. The study shows that our two methods are convergent, and they can find exact solutions for quadratic functions, so they can find high accurate solutions for over quadratic functions. The purposed two algorithms are programmed by Mathematica Version9. The approximate solutions of some test problems are given. Comparisons of our results with other methods illustrate the efficiency and highly accurate of our suggested methods.
Probes are models devised to investigate the encoding of knowledge---e.g. syntactic structure---in contextual representations. Probes are often designed for simplicity, which has led to restrictions on probe design that may not allow for the full exp loitation of the structure of encoded information; one such restriction is linearity. We examine the case of a structural probe (Hewitt and Manning, 2019), which aims to investigate the encoding of syntactic structure in contextual representations through learning only linear transformations. By observing that the structural probe learns a metric, we are able to kernelize it and develop a novel non-linear variant with an identical number of parameters. We test on 6 languages and find that the radial-basis function (RBF) kernel, in conjunction with regularization, achieves a statistically significant improvement over the baseline in all languages---implying that at least part of the syntactic knowledge is encoded non-linearly. We conclude by discussing how the RBF kernel resembles BERT's self-attention layers and speculate that this resemblance leads to the RBF-based probe's stronger performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا