Do you want to publish a course? Click here

Two New Methods for Solving Systems of Nonlinear Equations

طريقتان جديدتان لحل جمل المعادلات غير الخطية

3601   6   107   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we present two new methods for finding the numerical solutions of systems of the nonlinear equations. The basic idea depend on founding relationship between minimum of a function and the solution of systems of the nonlinear equations. The first method seeks the numerical solution with a sequence of search directions, which is depended on gradient and Hessian matrix of function, while the second method is based on a sequence of conjugate search directions. The study shows that our two methods are convergent, and they can find exact solutions for quadratic functions, so they can find high accurate solutions for over quadratic functions. The purposed two algorithms are programmed by Mathematica Version9. The approximate solutions of some test problems are given. Comparisons of our results with other methods illustrate the efficiency and highly accurate of our suggested methods.


Artificial intelligence review:
Research summary
يقدم هذا البحث طريقتين عددية جديدة لإيجاد الحلول العددية لجمل المعادلات غير الخطية. تعتمد الطريقة الأولى على استخدام متجه التدرج ومصفوفة هيسيان، بينما تعتمد الطريقة الثانية على متجهات البحث المترافقة. تم إثبات تقارب الطريقتين، حيث يمكنهما إيجاد حلول دقيقة للدوال التربيعية وحلول تقريبية للدوال غير التربيعية. تم تنفيذ الخوارزميات باستخدام برنامج Mathematica وتم اختبار فعاليتهما على عدة مسائل اختبارية، حيث أظهرت النتائج دقة وفعالية الطريقتين مقارنة بطرق أخرى مثل طريقة نيوتن وطريقة البحث الخطي والشبكات العصبية.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم طريقتين جديدتين وفعالتين لحل جمل المعادلات غير الخطية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم توضيح مدى تعقيد الخوارزميات بشكل كافٍ، مما يجعل من الصعب تقييم كفاءتها من حيث الزمن والموارد الحسابية. ثانياً، يمكن أن يكون هناك توضيح أكثر حول كيفية اختيار النقاط الابتدائية وتأثيرها على سرعة التقارب ودقة الحلول. أخيراً، يمكن أن يكون هناك مقارنة أكثر شمولية مع عدد أكبر من الطرائق العددية الأخرى لتقديم صورة أكثر وضوحاً عن مدى تفوق الطريقتين المقترحتين.
Questions related to the research
  1. ما هي الفكرة الأساسية التي تعتمد عليها الطريقتين المقترحتين في البحث؟

    تعتمد الفكرة الأساسية على وجود علاقة بين النهاية الدنيا لدالة وحل جملة المعادلات غير الخطية.

  2. ما هي الأدوات البرمجية التي استخدمت لتنفيذ الخوارزميات المقترحة؟

    تم تنفيذ الخوارزميات باستخدام برنامج Mathematica في نسخته التاسعة.

  3. ما هي أنواع الدوال التي يمكن للطريقتين المقترحتين إيجاد حلول دقيقة لها؟

    يمكن للطريقتين إيجاد حلول دقيقة للدوال التربيعية.

  4. كيف تم اختبار فعالية ودقة الطريقتين المقترحتين؟

    تم اختبار فعالية ودقة الطريقتين بتطبيقهما على عدة مسائل اختبارية ومقارنة النتائج مع طرق أخرى مثل طريقة نيوتن وطريقة البحث الخطي والشبكات العصبية.


References used
AMAYA I., J. CRUZ, R. CORREA, Real Roots of Nonlinear Systems of Equations Through a Metaheuristic Algorithm, University Industrial de Santander, No. 170, 2011, pp. 15-23
ARDELEAN, G., The Attraction Basins Of Iterative Methods for Solving Nonlinear Equations, Ph.D. Thesis, Technical University of Cluj-Napoca,North University Center at Baia Mare, Faculty of Sciences, 2012, pp. 1-56
GROSAN C., A. Abraham, T. Norway, Multiple Solutions for a System of Nonlinear Equations, International Journal of Innovative, Computing, Information and Control, Vol. x, No. x, 2008, pp. 1-12
rate research

Read More

In this paper, we described tow parallel algorithms for finding the solution of symmetric pentadiagonal linear systems of equations of order n . The proposed algorithms require 2 processors; each of both possesses      N O n local memor y. The first algorithm includes writing the pentadiagonal matrix in the form of product of tow tridiagonal matrices. We suggested a parallel algorithm for solving tridiagonal linear systems of equations. The second algorithm consists of decomposition of the pentadiagonal matrix in a form such that we can carry out the resulting linear systems of equations by using parallel algorithm. We carried out many numerical experiments to illustrate the efficiency, speeding up and accuracy for solving symmetric pentadiagonal linear systems of equations. The numerical experiments showed that the proposed algorithms were efficient and one of both was much faster in factor of 2 than the other one for solving the same test problems.
In this paper, we introduce a numerical method for solving systems of high-index differential algebraic equations. This method is based on approximating the exact solution by spline polynomial of degree eight with five collocation points to find the numerical solution in each step. The study shows that the method when applied to linear differential-algebraic systems with index equal one is stable and convergent of order 8, while it is stable and convergent of order 9-u for index equal u . Numerical experiments for four test examples and comparisons with other available results are given to illustrate the applicability and efficiency of the presented method
In this paper, spline collocation method is considered for solving two forms of problems. The first form is general linear sixth-order boundary-value problem (BVP), and the second form is nonlinear sixth-order initial value problem (IVP). The existen ce, uniqueness, error estimation and convergence analysis of purpose methods are investigated. The study shows that proposed spline method with three collocation points can find the spline solutions and their derivatives up to sixth-order of the two BVP and IVP, thus is very effective tools in numerically solving such problems. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا