Do you want to publish a course? Click here

Comparison of Some LU-factorization Methods for Solving pentadiagonal Linear Systems of Equations

مقارنة بعض طرائق تحليل LU لحل جمل المعادلات الخطية خماسية الأقطار

2472   2   101   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this Searching scientific, , we introduced three methods for finding the solution of pentadiagonal linear systems of equations.


Artificial intelligence review:
Research summary
في هذا البحث، قدم الدكتور زكريا زكريا من جامعة البعث دراسة حول جمل المعادلات الخطية خماسية الأقطار وطرق تحليل LU لحلها. تركز الدراسة على ثلاث طرق رئيسية: طريقة دوليتل، طريقة كراوت، وطريقة تحليل LU مع قاعدة كرامر. تم إجراء مقارنات عددية حاسوبية بين هذه الطرق لمعرفة أدائها من حيث زمن التنفيذ والدقة في الحصول على الحل. النتائج أظهرت أن طريقة Cr-LU هي الأفضل من حيث الأداء والدقة، بينما كانت طريقة DM-LU هي الأسوأ. البحث يتضمن تفاصيل حول كيفية تطبيق كل طريقة، بالإضافة إلى نتائج التجارب العددية التي تم إجراؤها على مسائل اختبار من المرتبة 3000. تم توضيح النتائج في جداول ورسوم بيانية تظهر أداء كل طريقة.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم مقارنة شاملة بين طرق تحليل LU المختلفة، إلا أنه يمكن تحسينه من خلال تقديم تحليل أعمق لأسباب تفوق طريقة Cr-LU على الطرق الأخرى. كما يمكن تضمين المزيد من التفاصيل حول تأثير حجم المصفوفة على أداء كل طريقة. بالإضافة إلى ذلك، يمكن أن يكون من المفيد تقديم توصيات حول كيفية تحسين الطرق الأخرى لتقليل الفجوة في الأداء بينها وبين طريقة Cr-LU.
Questions related to the research
  1. ما هي الطرق الثلاثة التي تم دراستها في البحث لحل جمل المعادلات الخطية خماسية الأقطار؟

    الطرق الثلاثة هي: طريقة دوليتل، طريقة كراوت، وطريقة تحليل LU مع قاعدة كرامر.

  2. ما هي الطريقة التي أظهرت أفضل أداء في حل جمل المعادلات الخطية خماسية الأقطار؟

    طريقة Cr-LU أظهرت أفضل أداء من حيث زمن التنفيذ والدقة.

  3. ما هي الطريقة التي كانت الأسوأ في الأداء وفقاً للبحث؟

    طريقة DM-LU كانت الأسوأ في الأداء.

  4. ما هي المعايير التي تم استخدامها لمقارنة أداء الطرق المختلفة؟

    تم استخدام زمن التنفيذ والدقة العددية كمقاييس لمقارنة أداء الطرق المختلفة.


References used
D.C.Lay, Linear Algebra and its Applications, New York, 1994
Matthews , John "module for cholesky , Doolittle and Crout Factorization ".from numerical Analysis-numrical Methods project ,2006
Weisstein , Eric "LU Decomposition " from Math World-A Wolfram Web Resource, 2006
rate research

Read More

In this paper, we described tow parallel algorithms for finding the solution of symmetric pentadiagonal linear systems of equations of order n . The proposed algorithms require 2 processors; each of both possesses      N O n local memor y. The first algorithm includes writing the pentadiagonal matrix in the form of product of tow tridiagonal matrices. We suggested a parallel algorithm for solving tridiagonal linear systems of equations. The second algorithm consists of decomposition of the pentadiagonal matrix in a form such that we can carry out the resulting linear systems of equations by using parallel algorithm. We carried out many numerical experiments to illustrate the efficiency, speeding up and accuracy for solving symmetric pentadiagonal linear systems of equations. The numerical experiments showed that the proposed algorithms were efficient and one of both was much faster in factor of 2 than the other one for solving the same test problems.
In this paper, we present two new methods for finding the numerical solutions of systems of the nonlinear equations. The basic idea depend on founding relationship between minimum of a function and the solution of systems of the nonlinear equatio ns. The first method seeks the numerical solution with a sequence of search directions, which is depended on gradient and Hessian matrix of function, while the second method is based on a sequence of conjugate search directions. The study shows that our two methods are convergent, and they can find exact solutions for quadratic functions, so they can find high accurate solutions for over quadratic functions. The purposed two algorithms are programmed by Mathematica Version9. The approximate solutions of some test problems are given. Comparisons of our results with other methods illustrate the efficiency and highly accurate of our suggested methods.
In this paper, we introduce a numerical method for solving systems of high-index differential algebraic equations. This method is based on approximating the exact solution by spline polynomial of degree eight with five collocation points to find the numerical solution in each step. The study shows that the method when applied to linear differential-algebraic systems with index equal one is stable and convergent of order 8, while it is stable and convergent of order 9-u for index equal u . Numerical experiments for four test examples and comparisons with other available results are given to illustrate the applicability and efficiency of the presented method
In this paper we consider the properties of linear systems by means of directed graphs and numerical structures. We also state efficient algorithms for determining an approximate number of the non-zero terms within determinants' expressions of the ir matrices. The stated algorithms make use of trees representing numerical structures which contains the indices of the nonzero terms. This paper yields interesting results used in practical engineering applications which include linear systems with sparse matrices, for example: networks, electronic circuits, earth velocities boxes (gearboxes), multi-works systems ...etc.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا