التحقيقات هي النماذج المبينة للتحقيق في ترميز المعرفة --- E.G. هيكل النحوي --- في تمثيلات السياقية. غالبا ما يتم تصميم تحقيقات البساطة، مما أدى إلى قيود على تصميم التحقيق الذي قد لا يسمح بالاستغلال الكامل لهيكل المعلومات المشفرة؛ واحد من هذا القيادة هو الخطي. ندرس حالة التحقيق الهيكلي (Hewitt and Manning، 2019)، والتي تهدف إلى التحقيق في ترميز الهيكل النحوي في تمثيلات سياقية من خلال تعلم التحولات الخطية فقط. من خلال مراعاة أن التحقيق الهيكلي يتعلم متريا، يمكننا أن نكون قادرين على تحليلها وتطوير متغير غير خطي رواية مع عدد متطابق من المعلمات. نحن نختبر في 6 لغات وتجد أن نواة الوظيفة الرئيسية (RBF)، بالتزامن مع التنظيم، وتحقق تحسنا كبيرا إحصائيا على أساس الأساس بجميع اللغات --- يعني أن جزءا على الأقل من المعرفة النحوية يتم تشفيره خطيا. نستنتج من خلال مناقشة كيفية تشبه Kernel RBF طبقات الانتباه ذاتية بيرت ومكهن أن هذه التشابه يؤدي إلى أداء التحقيق القائم على RBF.
Probes are models devised to investigate the encoding of knowledge---e.g. syntactic structure---in contextual representations. Probes are often designed for simplicity, which has led to restrictions on probe design that may not allow for the full exploitation of the structure of encoded information; one such restriction is linearity. We examine the case of a structural probe (Hewitt and Manning, 2019), which aims to investigate the encoding of syntactic structure in contextual representations through learning only linear transformations. By observing that the structural probe learns a metric, we are able to kernelize it and develop a novel non-linear variant with an identical number of parameters. We test on 6 languages and find that the radial-basis function (RBF) kernel, in conjunction with regularization, achieves a statistically significant improvement over the baseline in all languages---implying that at least part of the syntactic knowledge is encoded non-linearly. We conclude by discussing how the RBF kernel resembles BERT's self-attention layers and speculate that this resemblance leads to the RBF-based probe's stronger performance.
References used
https://aclanthology.org/
In this paper we consider the properties of linear systems by means of
directed graphs and numerical structures. We also state efficient algorithms
for determining an approximate number of the non-zero terms within
determinants' expressions of the
Unsupervised cross-domain dependency parsing is to accomplish domain adaptation for dependency parsing without using labeled data in target domain. Existing methods are often of the pseudo-annotation type, which generates data through self-annotation
In this paper, spline collocation method is considered for solving two forms of problems. The first form is general linear sixth-order boundary-value problem (BVP), and the second form is nonlinear sixth-order initial value problem (IVP). The existen
In this work , The fifth order non-polynomial spline functions is
used to solve linear volterra integral equations with weakly
singular kernel .
Numerical examples are presented to illustrate the applications
of this method and to compare the computed results with
other numerical methods.
Web search is an essential way for humans to obtain information, but it's still a great challenge for machines to understand the contents of web pages. In this paper, we introduce the task of web-based structural reading comprehension. Given a web pa