Do you want to publish a course? Click here

The Economic Study of hydrogen production and Storage from renewable power sources -Wind/Solar

الدراسة الاقتصادية لإنتاج و تخزين الهيدروجين من مصادر الطاقة المتجددة الريحية-الشمسية

2062   2   67   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The integration of various renewable energy sources as well as the liberalization of electricity markets are established facts in modern electrical power systems. The increased share of renewable sources within power systems intensifies the supply variability and intermittency. Therefore, energy storage is deemed as one of the solutions for stabilizing the supply of electricity to maintain generation-demand balance and to guarantee uninterrupted supply of energy to users. In the context of sustainable development and energy resources depletion, the question of the growth of renewable energy electricity production is highly linked to the ability to propose new and adapted energy storage solutions. Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near to conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors. This paper briefly discusses provides a historical perspective for hydrogen production and the role of hydrogen as an energy carrier, discusses hydrogen economy, the process of electrolysis for hydrogen production (especially from solar and wind technologies). A comprehensive techno/socio/economic study of long term hydrogen based storage systems in electrical networks is addressed. the excess produced hydrogen during high generation periods or low demand can be sold either directly to the grid owners or as filled hydrogen bottles. The affordable use of Hydrogen-based technologies for long term electricity storage is verified. The results indicate that ample resources exist to produce Hydrogen from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

References used
Montoya F. G., Aguilera M. J., Manzano-Agugliaro F. Renewable energy production in Spain: A review. Renew Sustain Energy Rev, 2014; 33, 509–53
Kumar A., Kumar K., Kaushik N., Sharma S., Mishra S. Renewable energy in India: current status and future potentials. Renew Sustain Energy Rev, 2010; 14(8), 2434- 2442
Pudukudy M., Yaakob Z., Mohammad M., Narayanan B., Sopian K. Renewable hydrogen economy in Asia–Opportunities and challenges: an overview. Renew Sustain Energy Rev, 2014;30, 43–757
rate research

Read More

Three identical gable-even-span greenhouses were designed, constructed and installed at the Agricultural and Veterinary Research Station of King Faisal University in order to produce cucumbers during the winter season. These experimental greenhous es were covered by ٠,٨mm thick fiberglass reinforced plastic. Two different solar heating systems were designed, built and employed to heat the ambient air temperature inside the greenhouses. The design of the first one was a surface heating system suspended and fixed on the southern side of the gable roof of one greenhouse. The second solar heating system was a solar panel, which was designed, built and situated outside of the other greenhouse.
In this paper, we have suggested the STATCOM (STATic synchronous COMpensator) to connect PV-solar (or wind) frame to the power system for the Hassia industrial city which we chose as a case study. This frame will provide the city with the required power, improve the power quality and inject the redundant to the power system.
The main objective of this research is to estimate the potential electrical power that can be extracted from closed and out-of-service oil wells situated in the north-eastern part of Syria. The research shows that using Organic Rankine Cycle (ORC) wi th Isobutane as working fluid can produce net power output under certain conditions. The geothermal cycle used brine solution to absorb the ground heat.
This paper treats the issue of wind energy storage, mechanically, using the flywheel device. We control the speed of the wind turbine and the flywheel by means of traditional PID controllers. These controllers are designed depending on the system m odel and its parameters. Speed control is achieved by electromagnetic rotor flux orientation as called vector control. Speed reference value of the wind turbine will be generated in order to track the maximum power point. The flywheel reference speed is generated based on a second order filter of power which is considered as a new contribution in this field of research. Frequency converters are not modeled but we only consider the control strategy. The results of modeling and simulation in Matlab satisfy the power smoothing issue and reflect the importance of this study.
Batteries are energy storage devices that are particularly useful for powering small portable devices like phones, laptops and entertainment devices as well as mobility devices that travel over the earth's surface, through water and air. During the night, or during a period of low solar irradiation, energy is supplied to the load from the battery in solar electrical Power Systems, and that provides Continuity of power supply, and on the other hand boosts the Reliability of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا