Do you want to publish a course? Click here

أثر حجم العينة على تقدير صعوبة الفقرة و الخطأ المعياري في تقديرها باستخدام نظرية الاستجابة للفقرة

740   0   30   0 ( 0 )
 Publication date 2007
  fields Education
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
تهدف هذه الدراسة إلى استقصاء تأثير حجم العينة على تقدير معلمة صعوبة الفقرة والخطأ المعياري في تقديرها باستخدام نظرية الاستجابة للفقرة. لتحقيق أهداف الدراسة، تم استخدام اختبار تحصيلي في الرياضيات للصف العاشر الأساسي، مكون من 80 فقرة من نوع الاختيار من متعدد. تم تطبيق الاختبار على عينات عشوائية طبقية تراوح حجمها بين 200 إلى 11292 طالبًا وطالبة. أظهرت النتائج أن قيمة معلمة صعوبة الفقرة تزداد بزيادة حجم العينة، حيث بلغ متوسط صعوبة الفقرات 0.31 لوجيت عند حجم عينة 200 طالب و1.1 لوجيت عند حجم عينة 11292 طالب. كما أن الخطأ المعياري في تقدير معلمة صعوبة الفقرة يتناقص بزيادة حجم العينة، حيث بلغ متوسط الأخطاء المعيارية 0.32 لوجيت عند حجم عينة 200 طالب و0.07 لوجيت عند حجم عينة 11292 طالب. تشير النتائج إلى أهمية مراعاة حجم العينة عند بناء الاختبارات وفق نظرية الاستجابة للفقرة لتحقيق دقة وموضوعية أكبر في القياس.
Critical review
دراسة نقدية: تعتبر هذه الدراسة مهمة في مجال القياس النفسي والتربوي، حيث تسلط الضوء على تأثير حجم العينة على تقدير معلمة صعوبة الفقرة والخطأ المعياري في تقديرها. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة للدراسة. أولاً، اقتصرت الدراسة على مبحث دراسي واحد وهو الرياضيات، مما قد يحد من تعميم النتائج على مواد دراسية أخرى. كما أن الدراسة اعتمدت على عينة من طلبة الصف العاشر الأساسي فقط، مما قد يؤثر على تعميم النتائج على فئات عمرية أو مستويات دراسية أخرى. بالإضافة إلى ذلك، كان من الممكن أن تتناول الدراسة معلمات أخرى مثل التمييز والتخمين لتقديم صورة أكثر شمولية عن تأثير حجم العينة. على الرغم من هذه النقاط، فإن الدراسة تقدم إسهامًا قيمًا في مجال القياس النفسي وتفتح المجال لمزيد من الأبحاث في هذا المجال.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو استقصاء تأثير حجم العينة على تقدير معلمة صعوبة الفقرة والخطأ المعياري في تقديرها باستخدام نظرية الاستجابة للفقرة.

  2. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    توصلت الدراسة إلى أن قيمة معلمة صعوبة الفقرة تزداد بزيادة حجم العينة، وأن الخطأ المعياري في تقدير معلمة صعوبة الفقرة يتناقص بزيادة حجم العينة.

  3. ما هي العينة التي تم استخدامها في الدراسة؟

    تم استخدام عينات عشوائية طبقية تراوح حجمها بين 200 إلى 11292 طالبًا وطالبة من طلبة الصف العاشر الأساسي في المدارس الحكومية والخاصة والمدارس التابعة لوكالة الغوث والثقافة العسكرية في الأردن.

  4. ما هي التوصيات التي قدمها الباحث بناءً على نتائج الدراسة؟

    أوصى الباحث بإجراء المزيد من الدراسات التي تتناول العلاقة بين حجم العينة ومعلمات أخرى مثل التمييز والتخمين، وتوفير بنوك أسئلة تتسم بمراعاة الخصائص السيكومترية لنظرية الاستجابة للفقرة.


References used
الدوسري، راشد . ( 2004 ) . القياس والتقويم التربوي الحديث . عمان: دار الفكر.
عدس، عبد الرحمن ومنيزل، عبد الله . ( 2002 ) . مقدمة في الإحصاء التربوي. عمان: دار الفكر .
.Baker, F. (2001) .The Basics of Item Response Theory Maryland: Universities of Maryland
rate research

Read More

The research aims to estimate the effect of sample size on the statistical test power (t) for one sample, two interrelated samples, two independent samples, and on the statistical test power of one-way analysis of variance test (F) to compare the averages. The descriptive method was used, and different sizes of samples (300) items, where it was generated using the program (PASS 14), and taken into account to be realized in this data the set of assumptions needed to make test (t) and (F), with respect to random testing, categorical level of measurement, normal distribution, and equinoctial variance.
This study aimed at finding out the differences in item difficulty parameter estimations for Simulated Data having (MC1- PL) Model in Item Response Theory (IRT) according to the differences in a test Dimensions (3D; 2D; 1D), correlations between th ese dimensions (0.0, 0.50, 0.86), and the statistical program used in analyzing the data (NOHARM ؛Bilog- MG3). The Monte Carlo simulations data having (MC1- PL) Model in IRT using (RESGENT) program; that fully filled in a 21-item was used to achieve the study aims. Data were analyzed using the statistical programs (NOHARM ؛Bilog- MG3). The results revealed no statistically significant differences in item difficulty parameter estimations that construct the multidimensional test within items due to differences in a test, correlations between these dimensions, and the statistical program used in analyzing the data (NOHARM ؛Bilog- MG3), as well as the estimations were consistent and high. Finally, the study recommends using these statistical programs for a data having (MC1- PL) Model, especially when similar assumptions are satisfied in a real data.
The research aims to develop some formulas of sample size and characterization and comparison among themselves to determine the best formula of formulas to calculate the sample size and the creation of a modified reflected well on the sample size, in addition to specifying individual gratification I and II for the relevant formulas and mathematical equations can predict the sample size, however the size of the community. The researcher through the study the following results: The results were identical to the formula related to the size and the sample size when consolidation requirements. Sample size did not increase with increasing size of the moral community at first gratification. No moral differences between sample volume according to the size of the community when individual gratification. Moral differences exist between sample size and average total inspection according to the size of the community when individual gratification. We got a mathematical models of the relationship between size and the sample size and the size of the community and the average total inspection. We have developed a comprehensive table gives sample size corresponding to the size of the community can be accessible to researchers to take advantage of it and apply the formulas as long as it originally relied upon certain conditions.
In human-level NLP tasks, such as predicting mental health, personality, or demographics, the number of observations is often smaller than the standard 768+ hidden state sizes of each layer within modern transformer-based language models, limiting th e ability to effectively leverage transformers. Here, we provide a systematic study on the role of dimension reduction methods (principal components analysis, factorization techniques, or multi-layer auto-encoders) as well as the dimensionality of embedding vectors and sample sizes as a function of predictive performance. We first find that fine-tuning large models with a limited amount of data pose a significant difficulty which can be overcome with a pre-trained dimension reduction regime. RoBERTa consistently achieves top performance in human-level tasks, with PCA giving benefit over other reduction methods in better handling users that write longer texts. Finally, we observe that a majority of the tasks achieve results comparable to the best performance with just 1/12 of the embedding dimensions.
تهدف هذه الدراسة إلى تحليل سلوك الطلب على النقود في سورية اعتماداً على بيانات ربع سنوية تشمل الفترة ١٩٧٤-١٩٩٤ . و استخدم الناتج المحلي الإجمالي بأسعار ١٩٨٥ ، و معدل التضخم، في تقدير دوال الطلب على النقود الحقيقية. و قد توطدت علاقة طلب على النقود مس تقرة طويلة الأجل بين هذه المتغيرات. و قدرت هذه العلاقة باستخدام نموذج تصحيح الخطأ و أسلوب التكامل المشترك. و نتيجة لانغلاق الاقتصاد السوري مالياً، فقد أخفق معدل الفائدة، و سعر الصرف في تفسير سلوك الطلب على النقود.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا