Do you want to publish a course? Click here

The Differences in Item Difficulty Parameter Estimations for Simulated Data having (MC1- PL) Model in Item Response Theory

الفروق في تقديرات معلم صعوبة الفقرة لبيانات محاكاة توائم النموذج التعويضي (MC1- PL) لنظرية استجابة الفقرة

1000   1   10   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This study aimed at finding out the differences in item difficulty parameter estimations for Simulated Data having (MC1- PL) Model in Item Response Theory (IRT) according to the differences in a test Dimensions (3D; 2D; 1D), correlations between these dimensions (0.0, 0.50, 0.86), and the statistical program used in analyzing the data (NOHARM ؛Bilog- MG3). The Monte Carlo simulations data having (MC1- PL) Model in IRT using (RESGENT) program; that fully filled in a 21-item was used to achieve the study aims. Data were analyzed using the statistical programs (NOHARM ؛Bilog- MG3). The results revealed no statistically significant differences in item difficulty parameter estimations that construct the multidimensional test within items due to differences in a test, correlations between these dimensions, and the statistical program used in analyzing the data (NOHARM ؛Bilog- MG3), as well as the estimations were consistent and high. Finally, the study recommends using these statistical programs for a data having (MC1- PL) Model, especially when similar assumptions are satisfied in a real data.


Artificial intelligence review:
Research summary
هدفت الدراسة إلى الكشف عن الفروق في تقديرات معلم صعوبة الفقرة لبيانات محاكاة توائم النموذج التعويضي (MC1-PL) لنظرية استجابة الفقرة (IRT) باختلاف عدد الأبعاد للاختبار وقوة الارتباط بين هذه الأبعاد واختلاف برمجية التقدير. استخدمت الدراسة بيانات محاكاة لعينة حجمها 1000 مفحوص، تم توليدها باستخدام برمجية RESGENT، وتم تحليل البيانات باستخدام البرمجيات الإحصائية NOHARM وBilog-MG3. أظهرت النتائج عدم وجود فروق ذات دلالة إحصائية في تقديرات معلم صعوبة الفقرات المشكلة للاختبار متعدد الأبعاد داخل الفقرات عند الحالات المختلفة لبعدية الأبعاد وباختلاف قوة الارتباط بين الأبعاد، وكذلك باختلاف برمجية التقدير. أوصت الدراسة بضرورة الاعتماد على البرمجيتين الإحصائيتين NOHARM وBilog-MG3 في تحليل البيانات التي توائم النموذج، وخاصة عندما تتحقق الافتراضات التي اعتمدتها الدراسة الحالية في بيانات حقيقية.
Critical review
تعتبر الدراسة خطوة مهمة في مجال القياس النفسي والتربوي، حيث تسلط الضوء على أهمية استخدام نماذج متعددة الأبعاد في تقدير معالم الفقرات وقدرات المفحوصين. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة للدراسة. أولاً، اقتصرت الدراسة على استخدام النماذج التعويضية فقط، ولم تتناول النماذج غير التعويضية، مما قد يحد من تعميم النتائج. ثانياً، اقتصرت الدراسة على عينات محاكاة ولم تتناول بيانات حقيقية، مما قد يؤثر على تطبيق النتائج في الواقع العملي. ثالثاً، لم تتناول الدراسة تأثير العوامل الأخرى مثل حجم العينة وطول الاختبار على تقديرات معلم صعوبة الفقرة، مما قد يكون له تأثير على النتائج. وأخيراً، كان من الممكن توسيع نطاق البرمجيات المستخدمة لتشمل برمجيات أخرى مثل BIGSTEPS أو TESTFACT لتحليل البيانات.
Questions related to the research
  1. ما الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو الكشف عن الفروق في تقديرات معلم صعوبة الفقرة لبيانات محاكاة توائم النموذج التعويضي (MC1-PL) لنظرية استجابة الفقرة (IRT) باختلاف عدد الأبعاد للاختبار وقوة الارتباط بين هذه الأبعاد واختلاف برمجية التقدير.

  2. ما هي البرمجيات الإحصائية التي استخدمت في تحليل البيانات؟

    استخدمت الدراسة البرمجيات الإحصائية NOHARM وBilog-MG3 في تحليل البيانات.

  3. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    أظهرت النتائج عدم وجود فروق ذات دلالة إحصائية في تقديرات معلم صعوبة الفقرات المشكلة للاختبار متعدد الأبعاد داخل الفقرات عند الحالات المختلفة لبعدية الأبعاد وباختلاف قوة الارتباط بين الأبعاد، وكذلك باختلاف برمجية التقدير.

  4. ما هي التوصيات التي قدمتها الدراسة؟

    أوصت الدراسة بضرورة الاعتماد على البرمجيتين الإحصائيتين NOHARM وBilog-MG3 في تحليل البيانات التي توائم النموذج، وخاصة عندما تتحقق الافتراضات التي اعتمدتها الدراسة الحالية في بيانات حقيقية.


References used
Ackerman, T. Using multidimensional item response theory to understand what items and tests are measuring. Applied Measurement in Education, 7, (1994). 255- 278
(Capar, N. (2000). Analyzing multidimensional response data structure represented by unidimensional IRT models increase the precision of scoring using out-of-scale information. Paper presented at the annual meting of the Florida educational research association (45th Tallahassee, FL, November 8-10, 2000
(Dawadi, B. (1999). Robustness of the polytomous IRT to violations of the unidimensionality assumption. Paper presented at the annual meeting of the American educational research association (Montreal, Canada, April 19-23, 1999
rate research

Read More

The current research is aimed at scaling Psychasthenia scale of Minnesota Multiphasic Personality Inventory 2 , access to a new form and brief to the test, it,s liberal from the sample and items properties, using one and pair parameter models, and testing the effect of two variables in the results of scaling Psychasthenia scale (the model used, the sample size) with using criteria of accuracy as the Standard Error, Relaibility and Information Function.
Item categorization is an important application of text classification in e-commerce due to its impact on the online shopping experience of users. One class of text classification techniques that has gained attention recently is using the semantic in formation of the labels to guide the classification task. We have conducted a systematic investigation of the potential benefits of these methods on a real data set from a major e-commerce company in Japan. Furthermore, using a hyperbolic space to embed product labels that are organized in a hierarchical structure led to better performance compared to using a conventional Euclidean space embedding. These findings demonstrate how label-guided learning can improve item categorization systems in the e-commerce domain.
Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to imp rove the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, and decoding in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.
هدفت هذه الدراسة إلى استقصاء أثر حجم العينة في تقدير معلمة صعوبة الفقرة ( Item Difficulty) و الخطـأ المعيـاري تقـديرها فـي (Standard Error of Estimation) باستخدام نظرية الاستجابة للفقرة (Theory Response Item) و لتحقيق أهـداف هـذه الدراسة تم اشتقا ق معلمة الصعوبة، و الخطأ المعياري في تقديرها باسـتخدام اختبـار تحصيلي في الرياضيات للصف العاشر الأساسي تكون في صورته النهائية من (80) فقرة من نوع الاختبار من المتعدد.
We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplificati on does not scale to the rapidly growing body of biomedical literature, motivating the need for automated approaches. Unfortunately, there are no large-scale resources available for this task. In this work we introduce a new corpus of parallel texts in English comprising technical and lay summaries of all published evidence pertaining to different clinical topics. We then propose a new metric based on likelihood scores from a masked language model pretrained on scientific texts. We show that this automated measure better differentiates between technical and lay summaries than existing heuristics. We introduce and evaluate baseline encoder-decoder Transformer models for simplification and propose a novel augmentation to these in which we explicitly penalize the decoder for producing jargon'' terms; we find that this yields improvements over baselines in terms of readability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا