Do you want to publish a course? Click here

The effect of sample size on the statistical test power

تقدير أثر حجم العينة في قوة الاختبار الإحصائي

2110   8   48   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The research aims to estimate the effect of sample size on the statistical test power (t) for one sample, two interrelated samples, two independent samples, and on the statistical test power of one-way analysis of variance test (F) to compare the averages. The descriptive method was used, and different sizes of samples (300) items, where it was generated using the program (PASS 14), and taken into account to be realized in this data the set of assumptions needed to make test (t) and (F), with respect to random testing, categorical level of measurement, normal distribution, and equinoctial variance.


Artificial intelligence review:
Research summary
تهدف هذه الدراسة إلى تقدير تأثير حجم العينة على قوة الاختبارات الإحصائية، بما في ذلك اختبار (t) لعينة واحدة، عينتين مترابطتين، عينتين مستقلتين، واختبار تحليل التباين الأحادي (F) للمقارنة بين المتوسطات الحسابية. استخدم الباحثون منهجًا وصفيًا مع عينات بأحجام مختلفة تصل إلى 300 مشاهدة إحصائية تم توليدها باستخدام برنامج PASS 14. تم التأكد من تحقيق الافتراضات اللازمة لهذه الاختبارات، مثل الاختيار العشوائي، مستوى القياس الفئوي، التوزيع الاعتدالي، وتجانس التباين. أظهرت النتائج أن قوة الاختبار تزداد مع زيادة حجم العينة. على سبيل المثال، كان حجم العينة 40 مناسبًا جدًا للحصول على قوة اختبار عالية في حالة اختبار (t) لعينة واحدة وعينتين مترابطتين، بينما كان حجم العينة 70 مناسبًا لاختبار (t) لعينتين مستقلتين. أما بالنسبة لاختبار (F)، فكان حجم العينة 40 مناسبًا للحصول على قوة اختبار عالية في حالة تساوي حجوم العينات، وحجم العينة 150 كان مناسبًا في حالة عدم تساوي حجوم العينات. توصي الدراسة بزيادة حجم العينة لتحقيق قوة اختبار مناسبة، مع تجنب المبالغة في زيادة حجم العينة عن الحد المطلوب.
Critical review
تعتبر هذه الدراسة مهمة في مجال الإحصاء التربوي لأنها تسلط الضوء على تأثير حجم العينة على قوة الاختبارات الإحصائية، وهو موضوع غالبًا ما يتم تجاهله في الأبحاث. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة للدراسة. أولاً، على الرغم من أن الدراسة استخدمت عينات كبيرة تصل إلى 300 مشاهدة، إلا أن النتائج قد تكون محدودة في تطبيقها على مجتمعات أكبر أو مختلفة. ثانيًا، الدراسة لم تتناول تأثير العوامل الأخرى مثل التوزيع غير الطبيعي للبيانات أو وجود تباينات غير متجانسة بشكل كافٍ. ثالثًا، كان من الممكن أن تكون الدراسة أكثر شمولية إذا تضمنت اختبارات إحصائية أخرى مثل اختبار (Chi-square) أو اختبارات الارتباط. وأخيرًا، على الرغم من أن الدراسة قدمت توصيات مفيدة، إلا أنها لم تقدم إرشادات عملية واضحة حول كيفية تحديد حجم العينة الأمثل في سياقات بحثية مختلفة.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو تقدير تأثير حجم العينة على قوة الاختبارات الإحصائية المختلفة مثل اختبار (t) واختبار تحليل التباين الأحادي (F).

  2. ما هي المنهجية المستخدمة في الدراسة؟

    استخدمت الدراسة المنهج الوصفي وتم توليد عينات بأحجام مختلفة تصل إلى 300 مشاهدة إحصائية باستخدام برنامج PASS 14، مع التأكد من تحقيق الافتراضات اللازمة للاختبارات الإحصائية.

  3. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    أظهرت النتائج أن قوة الاختبار تزداد مع زيادة حجم العينة. على سبيل المثال، كان حجم العينة 40 مناسبًا جدًا لاختبار (t) لعينة واحدة وعينتين مترابطتين، بينما كان حجم العينة 70 مناسبًا لاختبار (t) لعينتين مستقلتين. بالنسبة لاختبار (F)، كان حجم العينة 40 مناسبًا في حالة تساوي حجوم العينات، وحجم العينة 150 كان مناسبًا في حالة عدم تساوي حجوم العينات.

  4. ما هي التوصيات التي قدمتها الدراسة؟

    توصي الدراسة بزيادة حجم العينة لتحقيق قوة اختبار مناسبة، مع تجنب المبالغة في زيادة حجم العينة عن الحد المطلوب.


References used
Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic Press
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum
Hamadneh, Iyad Mohammed (2015). Statistical Power and Effect Size in Educational and Psychological Research Published in Journal of AL-MANARAH for Research and Studies, Research on Humanities and Social Sciences. Vol.5, No.20
rate research

Read More

Participation in inter-laboratory comparison programs is an important means of laboratory quality control and assessing laboratory performance, and these programs can be used by customers or regulatory bodies for the selection of qualified laborato ries. This research describes how to use inter-comparison tests and how to statistically analyse the test results. This research has a practical study of assessing laboratories performance in laboratories of the Syrian textile firms by distributing samples simultaneously to participating laboratories for testing. After collecting test results, the researcher used scientific methods to handle data to identify the weak points in laboratories performance and provide them the Feedback and technical advice to Assistance the lab to defining the measurement problems and evaluating of test methods and instrumentation , and could introduce some suggestions and recommendations to overcome.
The research aims to develop some formulas of sample size and characterization and comparison among themselves to determine the best formula of formulas to calculate the sample size and the creation of a modified reflected well on the sample size, in addition to specifying individual gratification I and II for the relevant formulas and mathematical equations can predict the sample size, however the size of the community. The researcher through the study the following results: The results were identical to the formula related to the size and the sample size when consolidation requirements. Sample size did not increase with increasing size of the moral community at first gratification. No moral differences between sample volume according to the size of the community when individual gratification. Moral differences exist between sample size and average total inspection according to the size of the community when individual gratification. We got a mathematical models of the relationship between size and the sample size and the size of the community and the average total inspection. We have developed a comprehensive table gives sample size corresponding to the size of the community can be accessible to researchers to take advantage of it and apply the formulas as long as it originally relied upon certain conditions.
In human-level NLP tasks, such as predicting mental health, personality, or demographics, the number of observations is often smaller than the standard 768+ hidden state sizes of each layer within modern transformer-based language models, limiting th e ability to effectively leverage transformers. Here, we provide a systematic study on the role of dimension reduction methods (principal components analysis, factorization techniques, or multi-layer auto-encoders) as well as the dimensionality of embedding vectors and sample sizes as a function of predictive performance. We first find that fine-tuning large models with a limited amount of data pose a significant difficulty which can be overcome with a pre-trained dimension reduction regime. RoBERTa consistently achieves top performance in human-level tasks, with PCA giving benefit over other reduction methods in better handling users that write longer texts. Finally, we observe that a majority of the tasks achieve results comparable to the best performance with just 1/12 of the embedding dimensions.
These papers aim to study the estimation of the simple linear regression equation coefficients using the least square method at different sample sizes and different sampling methods. And so on, the main goal of this research is to try to determine the optimum size and the best sampling method for these coefficients. We used experimental data for a population consist of 2000 students from different schools all over the country. We had changed the sample size each time and calculate the coefficients and then compare these coefficients for different sample sizes with their coefficients of the real population; and the results have been shown that the estimation of the linear regression equation coefficients are close from the real values of the coefficients of the regression line equation for the population when the sample size closes the value (325). As it turns out that the Stratified random sampling with proportional distribution with class sizes gives the best and most accurate results to estimate linear regression equation with least square method.
This research aims to show the importance of ensuring the competence of all who operate specific equipment, perform tests and/or calibrations, evaluate results, and sign test reports and calibration certificates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا