Do you want to publish a course? Click here

القياسات الآلية لتمييز التكلسات الخبيثة من التكلسات السليمة في صور الثدي المرقمنة

998   0   29   0 ( 0 )
 Publication date 2004
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية موضوع التصوير الشعاعي للثدي (الماموغرافيا) باستخدام الأشعة السينية، مع التركيز على الماموغرافيا الرقمية. يتم استعراض الأجهزة والبرمجيات المستخدمة في هذا المجال، بالإضافة إلى الطرق المختلفة لتحديد وتصنيف التكلسات في الثدي. يتم التمييز بين التكلسات الحميدة والخبيثة بناءً على الشكل والتوزيع. كما تتناول الورقة خوارزميات التشخيص التلقائي (CAD) وقياسات الصور التي تساعد في التعرف على الأنماط والتمييز بين الحالات المختلفة. يتم استخدام تقنيات معالجة الصور وبرامج مثل Image Pro-Pluse وExcel لتحليل الصور وتحديد المناطق ذات الاهتمام (ROI). تتناول الورقة أيضًا النظرية والقياسات المتعلقة بالتعرف على الأنماط وتحديد خصائص الأشكال المختلفة للتكلسات. يتم تقديم نتائج تحليلية وإحصائية لمختلف القياسات، مع التركيز على دقة وفعالية الطرق المستخدمة في الكشف عن التكلسات وتصنيفها.
Critical review
دراسة نقدية: تعتبر هذه الورقة البحثية مهمة في مجال التصوير الشعاعي للثدي، حيث تقدم معلومات شاملة حول الأجهزة والبرمجيات المستخدمة في الماموغرافيا الرقمية. ومع ذلك، يمكن الإشارة إلى بعض النقاط التي قد تحتاج إلى تحسين. أولاً، قد يكون من المفيد تضمين المزيد من الدراسات المقارنة بين الطرق المختلفة لتحديد التكلسات وتصنيفها، وذلك لتوضيح الفروقات الدقيقة بين هذه الطرق. ثانياً، قد يكون من الأفضل تقديم شرح أكثر تفصيلاً لبعض المصطلحات التقنية المستخدمة، وذلك لتسهيل فهم القراء غير المتخصصين. أخيراً، قد يكون من المفيد تضمين المزيد من الأمثلة العملية والتطبيقات السريرية للطرق والخوارزميات المذكورة، وذلك لتوضيح كيفية استخدامها في الواقع العملي.
Questions related to the research
  1. ما هي الأجهزة والبرمجيات المستخدمة في الماموغرافيا الرقمية؟

    تستخدم الماموغرافيا الرقمية أجهزة مثل LUMISCAN 100 وبرمجيات مثل Image Pro-Pluse وExcel لتحليل الصور وتحديد المناطق ذات الاهتمام (ROI).

  2. كيف يتم التمييز بين التكلسات الحميدة والخبيثة في الثدي؟

    يتم التمييز بين التكلسات الحميدة والخبيثة بناءً على الشكل والتوزيع، حيث يتم تصنيف التكلسات إلى مجموعات مختلفة مثل التكلسات الدقيقة، التكلسات الجلدية، التكلسات الوعائية، وغيرها.

  3. ما هي خوارزميات التشخيص التلقائي (CAD) المستخدمة في هذه الدراسة؟

    تستخدم الدراسة خوارزميات التشخيص التلقائي (CAD) لتحليل الصور وتحديد التكلسات وتصنيفها. هذه الخوارزميات تعتمد على قياسات الصور والتعرف على الأنماط.

  4. ما هي النتائج التحليلية والإحصائية التي تم التوصل إليها في هذه الدراسة؟

    تم تقديم نتائج تحليلية وإحصائية لمختلف القياسات المتعلقة بالتكلسات، مع التركيز على دقة وفعالية الطرق المستخدمة في الكشف عن التكلسات وتصنيفها. تم استخدام تقنيات معالجة الصور وبرامج تحليلية لتحقيق هذه النتائج.


References used
Sutton D., Whitehouse RW., Jenkins JPR., Daveis ER., Murfitt J. and Lees WR 1998 A Text Book of Radiology and Imaging, ٦th edition, Churchill Livingstone, London, U.K., pp
D’Orsi CJ. and Karellas A 1995 On line for digital mammography. Lancet, Vol.
rate research

Read More

يعد وجود التكلسات الميكروية العنقودية في صور الماموغرام أحد المؤشرات المبكرة لمرض سرطان الثدي. تظهر التكلسات على شكل جزيئات لامعة مختلفة الأشكال و الأحجام و قد توضعت على الخلفية الشعاعية لنسيج الثدي. يتّبع الطبيب مرحلتين في أثناء تحديد هذه الآفة: ١ - الكشف عن وجود تكلسات ميكروية في صورة الماموغرام، ثم ٢ - فحص كيفية توزع هذه التكلسات. طورت خوارزمية من أجل الكشف الآلي بحيث تُشابه طريقة الطبيب في تحديد آفات التكلسات الميكروية العنقودية. تُنفّذ الخوارزمية مبادئ فصل التراكيب ذات الطاقة العالية و مبادئ تحليل التوزع البنيوية.
Breast cancer is the most widespread types of cancer among women. An efficient diagnosis in its early stage can give women a better chance of full recovery. Calcification is the important sign for early breast cancer detection. Mammography is the m ost effective method for breast cancer early detection using low radiation doses. The studies improved the sensitivity of mammogram from 15% to 30% based on Computer Auto-Detection CAD systems, which are used as a “second opinion” to alert the radiologist to structures that, otherwise, might be overlooked. This article summarizes the various methods adopted for micro-calcification cluster detection and compares their performance. Moreover, reasons for the adoption of a common public image database as a test bench for CAD systems, motivations for further CAD tool improvements, and the effectiveness of various CAD systems in a clinical environment are given.
الهدف من هذا البحث هو استعمال الشبكة العصبونية ذات الانتشار العكسي BNN في تصنيف كتل الثدي من صور الماموغرام بهدف تخفيض عدد الخزعات الجراحية غيـر الضـرورية. قارنا في هذه الدراسة أداء تصنيف كتل الثدي في صور الماموغرام بين الشبكة العصـبونية ذات الانت شار العكسي (BNN (Network Neural Backpropagation و بين أطبـاء أشـعة. دخل BNN هو الصفات الشكلية وصفات الكسوة المستخلصة من الكتل.
Breast cancer is the second leading cause of death of women in the world. The early detection gives a better chance to cure it. Physicians diagnose breast tumors by analyzing the characteristics of the lesion in ultrasound images. Shape data, provi ded by a tumor contour, is important to physicians in making diagnostic decisions. However, due to the increasing use of technology in medicine, a computer aided detection systems (CAD) have been built to help the expert. This research focuses on using a level-set method as an effective lesion segmentation method for breast ultrasound images. By applying non-local means filter on image, the unwanted speckle noise will be removed and the image's important details will be preserved. Then the initial contours are sketched using the GUI in order to apply level-set method which delineates the contour of the lesion in breast ultrasound image. The proposed method was found to determine the breast tumor contours that are very similar to manual-sketched contours (about 96%).
A mammogram is the best option for early detection of breast cancer, Computer Aided Diagnostic systems(CADs) developed in order to improve the diagnosis of mammograms. This paper presents a proposed method to automatic images segmentation dependin g on the Otsu's method in order to detect microcalcifications and mass lesions in mammogram images. The proposed technique is based on three steps: (a) region of interest (ROI), (b) 2D wavelet transformation, and (c) OTSU thresholding application on ROI. The method tested on standard mini- MIAS database. It implemented within MATLAB software environment. Experimental results and performance evaluate results show that the proposed detection algorithm is a tool to help improve the diagnostic performance, and has the possibility and the ability to detect the breast lesions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا