Do you want to publish a course? Click here

Studying the Relationship Between hydrocarbons Saturation and Frequency Domain With Continuous Wavelet Transform (CWT)

دراسة علاقة الإشباع الهيدروكربوني مع تغيرات طيف التردد باستخدام تحويل النبضة المستمر

1461   0   40   0 ( 0 )
 Publication date 2010
  fields Geology
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Low frequency shadows is one of hydrocarbons indicators. It can be detected by means of a time-frequency decomposition which can provide higher frequency resolution at lower frequencies and higher time resolution at higher frequencies. This is desirable for analyzing seismic data, because the hydrocarbons in reservoir are diagnostic at lower frequencies. we have carried out such analyses with post-stack data sets on Fahda field which is located in Aleppo uplift, it contains oil. Adding a frequency axis to a 2D seismic section makes the data 3D axis. The comparison of the single frequency sections from such 3D volume can be utilized to detect low frequency shadows. A preferentially illuminated single frequency section at lower frequencies from Fahda field, shows high amplitude low frequency anomalies beneath oil zones. These anomalies disappear at higher frequencies.


Artificial intelligence review:
Research summary
تدرس هذه الورقة العلاقة بين تشبع الهيدروكربونات والمجال الترددي باستخدام تحويل المويجات المستمر (CWT). تُعتبر الظلال ذات التردد المنخفض واحدة من مؤشرات الهيدروكربونات، ويمكن اكتشافها من خلال تحليل التردد الزمني الذي يوفر دقة ترددية أعلى عند الترددات المنخفضة ودقة زمنية أعلى عند الترددات العالية. هذا التحليل مفيد في تحليل بيانات الزلازل، حيث تكون الهيدروكربونات في الخزان التشخيصي عند الترددات المنخفضة. تم إجراء هذه التحليلات باستخدام مجموعات بيانات ما بعد التكديس في حقل فهدة الواقع في ارتفاع حلب، والذي يحتوي على النفط. بإضافة محور التردد إلى مقطع زلزالي ثنائي الأبعاد، تصبح البيانات ثلاثية الأبعاد. يمكن استخدام مقارنة المقاطع الترددية الفردية من هذا الحجم ثلاثي الأبعاد لاكتشاف الظلال ذات التردد المنخفض. تظهر المقاطع الترددية الفردية المضيئة بشكل تفضيلي عند الترددات المنخفضة من حقل فهدة شذوذات ذات سعة عالية وتردد منخفض تحت مناطق النفط. هذه الشذوذات تختفي عند الترددات العالية.
Critical review
دراسة نقدية: تعتبر هذه الورقة مساهمة قيمة في مجال استكشاف الهيدروكربونات باستخدام تقنيات تحليل التردد الزمني. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم توضيح كيفية اختيار الترددات المحددة للتحليل بشكل كافٍ، مما قد يؤثر على دقة النتائج. ثانياً، كان من الممكن تقديم مقارنة مع تقنيات أخرى مشابهة لتوضيح مزايا وعيوب استخدام تحويل المويجات المستمر بشكل أفضل. أخيراً، كان من الممكن تضمين المزيد من البيانات الميدانية لدعم النتائج المقدمة في الدراسة.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي هو دراسة العلاقة بين تشبع الهيدروكربونات والمجال الترددي باستخدام تحويل المويجات المستمر (CWT) لاكتشاف الظلال ذات التردد المنخفض كمؤشر للهيدروكربونات.

  2. ما هي البيانات التي تم استخدامها في التحليل؟

    تم استخدام مجموعات بيانات ما بعد التكديس من حقل فهدة الواقع في ارتفاع حلب، والذي يحتوي على النفط.

  3. ما هي الفائدة من إضافة محور التردد إلى المقطع الزلزالي؟

    إضافة محور التردد إلى المقطع الزلزالي يجعل البيانات ثلاثية الأبعاد، مما يساعد في اكتشاف الظلال ذات التردد المنخفض بشكل أكثر دقة.

  4. ما هي الشذوذات التي تم اكتشافها في حقل فهدة؟

    تم اكتشاف شذوذات ذات سعة عالية وتردد منخفض تحت مناطق النفط، وهذه الشذوذات تختفي عند الترددات العالية.


References used
Addison, P. S. (2002). The illustrated wavelet transform handbook, London, UK
Castagna, J. Anno, P and Taner et al., (2005). Spectral Decomposition of Seismic Data with Continuous Wavelet Transform, School of Geology and Geophysics, University of Oklahoma,U.S.A. Phil Anno
Iske, A; Randen, T. (2005). Mathematical methods and modelling in hydrocarbon exploration and production. University of Leicester, Department of Mathematics, United Kingdom. Avner Friedman
rate research

Read More

In this study, basic methodologies and procedures for generation synthetic time histories in time domain and frequency domain are summarized. These synthetic time histories are matching Syrian spectrum and compatible with wide range of buildings m odels and soil types according to the seismic parameters of Lattakia city. This paper will discuss the Selection and scaling criteria of three real time history records available in strong ground motion databases to satisfy the Syrian spectrum, and the suitability as input to time history analysis of civil engineering structures.
The evaluation of the capacity of signalized intersections is one of the most important parameter used in the planning, design, operation and management of urban street networks. The calculation of capacity depends on the estimation of the saturati on flow of the signalized intersections. The highway Capacity Manual (HCM 2010) is used to estimate and analyze the saturation flow. This method is widely used in many countries around the world, including Syria. It reflects the local conditions in the United States of America; therefore it may not be suitable for use in our local conditions. This study includes estimation of the field saturation flow depending on the headways between the vehicles in the queues, and comparing the field results of the saturation flow with the values resulting from using the HCM. The study was conducted on three intersections in the Tartous city. The analysis was based on data collection using video. The final results confirmed that there is a clear difference between the field measurement of the saturation flow and computation value, Which confirms that it cannot be used for our local conditions.
Weather forecasting (especially rainfall) is one of the most important and challenging operational tasks carried out by meteorological services all over the world. Itis furthermore a complicated procedure that requires multiple specialized fields o f expertise. In this paper, a model based on artificial neural networks (ANNs) and wavelet Transform is proposed as tool to predict consecutive monthly rainfalls (1933-2009) taken of Homs Meteorological Station on accounts of the preceding events of rainfall data. The feed-forward neural network with back-propagation Algorithm is used in the learning and forecasting, where the time series of rain that detailed transactions and the approximate three levels of analysis using a Discrete wavelet transform (DWT). The study found that the neural network WNN structured )5-8-8-8-1(, able to predict the monthly rainfall in Homs station on the long-term correlation of determination and root mean squared-errors (0.98, 7.74mm), respectively. Wavelet Transform technique provides a useful feature based on the analysis of the data, which improves the performance of the model and applied this technique in ANNmodels for rain because it is simple, as this technique can be applied to other models.
The evaluation of surface water resources is a necessary input to solving water management problems, which includes finding a relationship between precipitation and runoff, and this relationship is a high degree of complexity. The rain of the most important factors that greatly effect on rivers discharge, and process to prediction of these flows must take this factor into account, and much of the attention and study, artificial neural networks and is considered one of the most modern methods in terms of accuracy results in linking these multiple factors and highly complex. In order to predict the runoff contained daily to Lake Dam Tishreen 16 in Latakia, the subject of our research, the application of different models of artificial neural networks (ANN), was the previous input flows and rain. Divided the data set for the period between (2006-2012) into two sets: training and test, has been processing the data before using them as inputs to the neural network using Discrete Wavelet Transform technique, to get rid of the maximum values and the values of zero, where t the analysis of time series at three levels of accuracy before they are used sub- series resulting as inputs to the Feed Forward ANN that depend back-propagation algorithm for training. The results indicated that with the structural neural network (1-2-6) Wavelet-ANN model, are the best in the representation of the characteristics studied and best able to predict runoff daily contained to Lake Dam Tishreen 16 for a day in advance, where he reached the correlation coefficient the root of the mean of squared-errors (R2 = 0.96, RMSE = 1.97m3 / sec), respectively.
In our research we studied and analyzed the different types of methods used for automatic building detection from the satellite images, then, we proposed a general methodology for building detection based on its geometrical boundary features using Hough transform for the rectangular forms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا