تم بناء نظام استرجاع لصور الطرح الرقمي للأوعية الدموية الدماغية ثنائية الأبعاد اعتماداً على المحتوى. يقوم النظام بإيجاد صور في قاعدة بيانات لصور الطرح الرقمي للأوعية الدموية الدماغية (حالة أمهات الدم الكيسية) ذات محتوى مشابه لصورة استعلام معينة و استرجاعها. تمت عملية الاستعلام عن طريق استخلاص خصائص الشكل البصرية لأمهات الدم في صورة الاستعلام و صياغتها في متجه خصائص و مقارنة مكوناته مع متجهات خصائص الشكل لأمهات الدم في صور الطرح الرقمي للأوعية الدموية الموجودة في قاعدة البيانات. تم قياس التشابه باستخدام المسافة الاقليدية، و من ثم استرجاع الصور التي لها محتوى مشابها لصورة الاستعلام. تم حساب الدقة بإيجاد نسبة مساحة أم الدم في الصور المسترجعة الأولى إلى مساحة أم الدم في صورة الاستعلام لثمان حالات استعلام تم تنفيذها، بلغت قيمة متوسط الدقة 98%، تبين النتائج أنَّه يمكن استخدام النظام المنفذ لاسترجاع الصور اعتماداً على المحتوى لإيجاد المساحة غير المعلومة لأم الدم من قاعدة بيانات لصور أمهات الدم تكون فيها مساحة أم الدم فيها معلومة.
Content based 2Dcerebral digital subtraction angiography(DSA) images retrieval
system has been built. The systemfinds and retrieves images fromcerebral DSA imagedatabase(
Cerebral Sacular Aneurysms) which have a similar content to a query image.
Retrieval is done by extracting the visual shape features of cerebral saccular aneurysms
from a query image, formulating them in a feature vector, comparing feature vector
components with those of the cerebralDSA images in the database. Similarity measures
using Euclidian distanceare computed,based on the similarity measures, images which
have a similar content to the query image are retrieved. Resolution has been calculated by
finding the ratio between cerebral sacular aneurysm area in first retrieved image to cerebral
sacular aneurysm area in the query image for the eight query process which have been
done, average resolution was 98%. Results indicates that the designed content based image
retrieval could be used to calculate unknown cerebral saccular aneurysms area from a
cerebral saccular aneurysms database images whose areas are known.
Artificial intelligence review:
Research summary
تم بناء نظام استرجاع لصور الطرح الرقمي للأوعية الدموية الدماغية ثنائية الأبعاد اعتماداً على المحتوى. يقوم النظام بإيجاد صور في قاعدة بيانات لصور الطرح الرقمي للأوعية الدموية الدماغية (حالة أمهات الدم الكيسية) ذات محتوى مشابه لصورة استعلام معينة واسترجاعها. تمت عملية الاستعلام عن طريق استخلاص خصائص الشكل البصرية لأمهات الدم في صورة الاستعلام وصياغتها في متجه خصائص ومقارنة مكوناته مع متجهات خصائص الشكل لأمهات الدم في صور الطرح الرقمي للأوعية الدموية الموجودة في قاعدة البيانات. تم قياس التشابه باستخدام المسافة الإقليدية، ومن ثم استرجاع الصور التي لها محتوى مشابه لصورة الاستعلام. تم حساب الدقة بإيجاد نسبة مساحة أم الدم في الصور المسترجعة الأولى إلى مساحة أم الدم في صورة الاستعلام لثمان حالات استعلام تم تنفيذها، بلغت قيمة متوسط الدقة 98%. تبين النتائج أنه يمكن استخدام النظام المنفذ لاسترجاع الصور اعتماداً على المحتوى لإيجاد المساحة غير المعلومة لأم الدم من قاعدة بيانات لصور أمهات الدم تكون فيها مساحة أم الدم معلومة.
Critical review
دراسة نقدية: يعتبر البحث خطوة مهمة في مجال استرجاع الصور الطبية اعتماداً على المحتوى، حيث يقدم نظاماً فعالاً ودقيقاً لاسترجاع صور أمهات الدم الكيسية الدماغية. ومع ذلك، يمكن تحسين البحث من خلال توسيع قاعدة البيانات لتشمل أنواعاً أخرى من الصور الطبية مثل صور التصوير المقطعي المحوري والرنين المغناطيسي. كما يمكن تحسين النظام بإدخال خصائص إضافية غير خصائص الشكل، مثل خصائص النسيج واللون، مما قد يزيد من دقة وفعالية النظام في استرجاع الصور. بالإضافة إلى ذلك، يمكن اختبار النظام على مجموعة أكبر من الصور للتحقق من استقراره وفعاليته في ظروف مختلفة.
Questions related to the research
-
ما هي الطريقة المستخدمة لقياس التشابه بين الصور في النظام المقترح؟
تم استخدام المسافة الإقليدية لقياس التشابه بين متجهات خصائص الشكل لصورة الاستعلام والصور في قاعدة البيانات.
-
ما هي نسبة الدقة التي حققها النظام في استرجاع الصور؟
بلغت قيمة متوسط الدقة 98% عند استرجاع الصور المشابهة لصورة الاستعلام.
-
ما هي الخصائص البصرية التي تم استخلاصها من صور أمهات الدم؟
تم استخلاص خصائص الشكل البصرية مثل المساحة، المحيط، معامل الاستدارة، المحور الرئيس، المحور الثانوي، الاتجاه، المساحة المحدبة، رقم أولر، المساحة المملوءة، معامل الاختلاف المركزي، القطر المكافئ، معامل التحدب، والمدى.
-
ما هي التوصيات المقترحة لتحسين النظام في المستقبل؟
من التوصيات المقترحة لتحسين النظام: استخدام خصائص إضافية غير خصائص الشكل، مثل خصائص النسيج واللون، وتوسيع قاعدة بيانات الصور لتشمل أنواعاً أخرى من الصور الطبية مثل صور التصوير المقطعي المحوري والرنين المغناطيسي، وزيادة عدد الصور في قاعدة البيانات.
References used
Abate AF, Nappi M, Tortora G, Tucci M.IME: an image management environment with content-based access.Image and Vision Computing, vol.17, no.13, 1999, 967-980
Arevalillo .H M, Domingo J, Ferri J F. Combining similarity measures in content-based image retrieval. Pattern recognition letters, vol. 29, no. 16, 2008, 2174- 2181
Depeursinge A, Vargas A, Gaillard F, Platon A, Geissbuhler A, Poletti PA, Müller H. Case-based lung image categorization and retrieval for interstitial lung diseases: clinical workflows.International journal of computer assisted radiology and surgery, vol. 7, no. 1, 2011, 97-110