Do you want to publish a course? Click here

Content based image retrieval cbir

استرجاع الصور بالاعتماد على المحتوى

5766   10   227   0 ( 0 )
 Publication date 2013
and research's language is العربية
 Created by Zein Shaheen




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
تهدف هذه الدراسة إلى تسليط الضوء على استرجاع الصور من مجموعة كبيرة بالاعتماد على محتوى صورة الهدف، وتم تدعيمها بتطبيق ضمن بيئة الماتلاب لبرنامج بحث عن الصور المشابهة لصورة مدخلة. ركز البحث على ميزتين هامتين هما الهيستوغرام اللوني وميزات البنية (texture)، وتم توضيح خطوات عملية الاسترجاع بدءاً من تحليل الصورة واستخلاص شعاع الواصفات الخاص بها، ومطابقته مع أشعة الميزات الخاصة بالصور الموجودة في قاعدة البيانات لترتيب الصور بحسب مدى تشابهها مع الصورة الهدف. كما تطرقت الدراسة إلى استخدام الفضاء اللوني HMMD كبديل للفضاء اللوني RGB لاستخراج واصفات البنية اللونية، مما يضمن نتائج أفضل ترضي المستخدم. تم تدعيم الدراسة بعدد من الأشكال والأمثلة والمخططات التي توضح محتوى الدراسة النظرية وما تم عمله في التطبيق ضمن بيئة الماتلاب.
Critical review
دراسة نقدية: على الرغم من أن الدراسة تقدم نظرة شاملة ومفصلة حول استرجاع الصور اعتماداً على المحتوى، إلا أنها تفتقر إلى بعض النقاط الهامة. أولاً، لم يتم التطرق بشكل كافٍ إلى التحديات العملية التي قد تواجه تطبيق النظام في بيئات حقيقية. ثانياً، كان من الممكن تقديم مقارنة بين أداء الفضاء اللوني HMMD والفضاءات اللونية الأخرى بشكل أكثر تفصيلاً. ثالثاً، الدراسة تركز بشكل كبير على الجانب النظري والتطبيقي داخل بيئة الماتلاب، ولكنها لم تقدم حلولاً عملية لتطبيق النظام في بيئات برمجية أخرى مثل جافا أو تطبيقات الموبايل. أخيراً، كان من الممكن تضمين تجارب عملية واختبارات أداء للنظام المقترح لتقديم دليل عملي على فعاليته وكفاءته.
Questions related to the research
  1. ما هي الميزات الأساسية التي تم التركيز عليها في الدراسة لاسترجاع الصور؟

    تم التركيز على ميزتين أساسيتين هما الهيستوغرام اللوني وميزات البنية (texture).

  2. ما هو الفضاء اللوني الذي تم اقتراحه كبديل للفضاء اللوني RGB؟

    تم اقتراح الفضاء اللوني HMMD كبديل للفضاء اللوني RGB.

  3. ما هي البيئة البرمجية التي تم استخدامها لتطبيق نظام استرجاع الصور في الدراسة؟

    تم استخدام بيئة الماتلاب لتطبيق نظام استرجاع الصور في الدراسة.

  4. ما هي التحديات التي واجهت الباحثين في الحصول على المراجع والمعلومات اللازمة للدراسة؟

    واجه الباحثون تحديات تتعلق بالحظر المفروض من قبل الشركات الغربية على المواطن السوري في الدخول إلى العديد من المواقع التي يتم فيها تشارك المعرفة، بالإضافة إلى عدم القدرة على الدخول إلى المكتبات العالمية على الإنترنت بسبب عدم مجانية الحصول على الملفات المتاحة.


References used
John Eakins and Margaret Graham (1999) , "Content-based Image Retrieval" , University of Northumbria at Newcastle
Li, Ze-Nian, and Mark S. Drew. Fundamentals of multimedia, ISBN: 0130618721. Vol. 7458. Pearson Education, Inc., Upper Saddle River, NJ, 2004
Howarth, Peter, and Stefan Rüger. "Evaluation of texture features for content-based image retrieval." Image and Video Retrieval. Springer Berlin Heidelberg, 2004. 326-334
Kim, Hyeon Jun, and Jin Soo Lee. "HMMD color space and method for quantizing color using HMMD space and color spreading." U.S. Patent No. 6,633,407. 14 Oct. 2003
Huang, Yin-Fu, and He-Wen Chen. "A multi-type indexing CBVR system constructed with MPEG-7 visual features." Active Media Technology. Springer Berlin Heidelberg, 2011. 71-82
Ventura Royo, Carles. "Image-Based Query by Example Using MPEG-7 Visual Descriptors."
rate research

Read More

Content Based Medical Image Retrieval (CBMIR) systems are a new technique which researchers aim to integrate with Computer Aided Diagnosis systems. These systems usually find and retrieve images from a large image-database which have a similar conten t to a query image. Retrieval is done by extracting the visual features from the query image, formulating them in a features vector, comparing features vector components with those of the images in the database, and then, similarity measures are computed. Based on the similarity measures, images which have a similar content to the query image are retrieved. The introduced analysis study surveys and analyzes the current status of the CBMIR systems, evaluates our findings from this survey, and concludes some specific research directions in this field.
This research describes a system for recognition of handwritten Arabic word without prior segmentation of the word into characters. In this system, the recognition will be happened at two levels. It is evolved basing on OCR (Optical Character Reco gnition), Hidden Markov Model, CBIR(Content Based Image Retrieval), it also involves Mathematical Morphology.
Image captioning systems are expected to have the ability to combine individual concepts when describing scenes with concept combinations that are not observed during training. In spite of significant progress in image captioning with the help of the autoregressive generation framework, current approaches fail to generalize well to novel concept combinations. We propose a new framework that revolves around probing several similar image caption training instances (retrieval), performing analogical reasoning over relevant entities in retrieved prototypes (analogy), and enhancing the generation process with reasoning outcomes (composition). Our method augments the generation model by referring to the neighboring instances in the training set to produce novel concept combinations in generated captions. We perform experiments on the widely used image captioning benchmarks. The proposed models achieve substantial improvement over the compared baselines on both composition-related evaluation metrics and conventional image captioning metrics.
Content based 2Dcerebral digital subtraction angiography(DSA) images retrieval system has been built. The systemfinds and retrieves images fromcerebral DSA imagedatabase( Cerebral Sacular Aneurysms) which have a similar content to a query image. R etrieval is done by extracting the visual shape features of cerebral saccular aneurysms from a query image, formulating them in a feature vector, comparing feature vector components with those of the cerebralDSA images in the database. Similarity measures using Euclidian distanceare computed,based on the similarity measures, images which have a similar content to the query image are retrieved. Resolution has been calculated by finding the ratio between cerebral sacular aneurysm area in first retrieved image to cerebral sacular aneurysm area in the query image for the eight query process which have been done, average resolution was 98%. Results indicates that the designed content based image retrieval could be used to calculate unknown cerebral saccular aneurysms area from a cerebral saccular aneurysms database images whose areas are known.
Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic computation and memory requirements with respect to sequence length. Successful approaches to re duce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: It combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to O(n1.5d) from O(n2d) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity), as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192. We open-source the code for Routing Transformer in Tensorflow.1
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا