قمنا من خلال هذا البحث بتصميم برنامج يهدف إلى تحديد النقاط الحرجة التي يمكن أن
تسبب إنهيار التوتر، و بناء شبكة عصبونية ضمن بيئة برمجيات ماتلاب مهمتها التنبؤ بقيمة
الاستطاعة العظمى التي يمكن نقلها على نظام القدرة الكهربائية في ظروف انهيار التوتر
دون أن ينهار نظام القدرة، و تدريبها على حالات واقعية تعرضت لها أنظمة القدرة الكهربائية،
ثم قمنا بتطبيق هذه الشبكة العصبونية المدربة على شبكة مرجعية IEEE-14 Bus-bar لإختبار
أدائها و مقارنة النتائج.
The contribution of our research include building an artificial neural
network in MATLAB program environment and improvement of
maximum loading point algorithm, to compute the most critical
voltage stability margin, for on-line voltage stability assessment,
and a method to approximate the most critical voltage stability
margin accurately. a method to create a (ARTIFICIAL NEURAL
NETWORK) approach.
References used
Carson W. Taylor, 1994-Power System Voltage Stability by McGraw-Hill, Inc
Flatabo, N.;Ognedal, R.;Carlsen, T. Nov. 1990-Voltage Stability Condition in Power Transmission System Calculated by Sensitivity Methods IEEE Transactions, Volume: 5 Issue: 4
James A. Momoh and El-Hawary Mohamed E.-Electric Systems,Dynamics, and Stability with Artificial Intelligence Applications.Marcel Dekker.Inc, New York,356P
This paper presents a new technique based on artificial neural networks (ANNs) to
correct power factor. A synchronous motor controlled by the neural controller was used to
handle the problem of reactive power compensation of the system, in order to
In this paper, we presented a scientific methodicalness in
very short term load forecasting depends on back propagation
artificial neural networks, and we relied upon real data of Syrian
electrical power system.
In this research, We present a scientific advanced developed
study and keeping up with new studies and technologies of very
short-term electrical load forecasting and applying this study for
electrical load forecasting of basic Syrian electrical p
The fluctuation of voltage cannot be tolerant for equipment in modern industrial
plants such as lighting loads, PLC, robots, and another equipment, which exist in
transmission and distribution systems, so we should use proper aids to regulate volta
This paper shows a new approach to determine the presence of defects and to classify the defect type online based on Artificial Neural Networks (ANNs) in electrical power system transmission lines. This algorithm uses current and voltage signals samp