Do you want to publish a course? Click here

Preparing pure thin films from poly vinyl chloride and studying the effect of the rotating velocity on the optical constants

تحضير أفلام رقيقة نقية من بولي فينيل كلورايد PVC و دراسة تأثير سرعة الدوران على الثوابت الضوئية

1295   2   52   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this research we have prepared thin films from poly vinyl chloride (PVC) by spin coating technique in three velocities (1000,2000,3000)RPM on glass substrate (Micro scope cover glass), at room temperature. The absorbance A, and transmittance T for the films were studied in the visible and ultra-violet region (UV-VIS). In addition,we have calculated the absorbance coefficient α, skin depth δ, refractive index no, dielectric constant ε (the real part and the imaginary part), also we have calculated the energy band gap of allowed and forbidden direct transitions. The films showed high transmittance (80-90)%, in the infrared region as a function of the spinning velocity and took the maximum value 80% for the velocity 1000RPM, and 90% for the velocity 3000RPM, and the refractive index was decreased with the velocity increase, we found it between3.67 and 4.56 for the velocities 3000RPM and 1000RPM respectively. Whereas the skin depth δ decreased with the increasing of velocity, the minimum value was 0.0000531cm for the velocity 3000RPM and the maximum value was almost 0.00023cm for the velocity 1000RPM.



References used
AGUILAR R.G. et al, Low cost instrumentation for spin-coating deposition of thin films in an undergraduate laboratory. Latin American Journal of physical Education , Vol. 5, No.2, Mexico, 2011, 368-373
GRASSI A. G. et al ,On-line thickness measurement for two-layer system on polymer electric devices. Journal of Sensors, Munich, Germany, Vol. 13, 2013,47-57
ILICAN S. et al ,preparation and characterization of ZnO thin films deposited by sol-gel coating method. Journal of optoelectronic and advanced materials, Turkey, Vol. 10,2008, 2578-2583
rate research

Read More

In this paper we present the structural, optical and electrical characteristics of ZnO thin films grown for different parameters by the atomic layer deposition (ALD) method. The films were grown on glass and silicon substrates at low temperatures. We used diethyl-zinc (DEZn) and deionized water as zinc and an oxygen sources, respectively. Measurements of surface morphology, photoluminescence at room temperature (RT PL) and Hall Effect were made for ZnO layers. The films obtained at 130°C show the highest carrier concentration (1.1×1019 cm-3) and the lowest resistivity (2.84×10-2 Wcm). The films exhibit mobility up to 19.98 cm2/Vs that we associate to the technological process used.
Mn doped tin oxide transparent conducting thin films were deposited at a substrate temperature of 450°C by spray pyrolysis method. Structural properties of the films were investigated as a function of various Mn-doping levels (0, 1, 3, 5, 7 wt%) w hile all other deposition parameters such as substrate temperature, spray rate, carrier gas pressure and distance between spray nozzle to substrate were kept constant.
Fluorescence spectroscopy has long been one of the most useful bio-physical techniques available to scientists studying the structure and function of biological tissues due to high sensitivity of fluorescence signal to variations of optical properties of tissues as a result of structural variations.
In this work, multi-layer thin films (insulator - metal - insulator) were prepared on glass substrates. Where we deposited the following order of (zinc oxide - silver - zinc oxide) by magnetron sputtering of zinc oxide and vacuum thermal evaporation technique for silver.
CdTe Thin films were deposited on silicon substrates by thermal evaporation method. The geometric thickness was calculated using interferometric method based on reflectance curve recorded with the spectrophotometer. The Reflection of High-Energy E lectron Diffraction (RHEED) patterns and XRD analysis reveals that the structure of the films are polycrystalline with preferential orientation (111). The structure constant (a), crystallite size (D), dislocation density (δ) and strain (ε) were calculated, and it is observed that the crystallite size increases but micro-strain and dislocation density decreases with increases in thin film thickness. The composition of the samples was determined by Energy Dispersive X-ray Analysis (EDX) and it is found that the wt.% of Cd increases and the wt.% of Te decreases with the increases of film thickness due to the re-evaporation of Te.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا