Do you want to publish a course? Click here

Some Application of second-order epi-derivativse in terme of Housdoroff distance

دراسة بعض تطبيقات المشتقات فوق البيانية من المرتبة الثانية باستخدام مفهوم مسافة هاوسدورف

1593   0   206   0 ( 0 )
 Publication date 2013
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The purpose of this research is toextendsome results introduced by Rockafellar[19] in finite-dimensioal spaces to general Banach space using the Housdoroff distance convergent instead of epigraphical convergent .These results are aplicationsto study the second-order epi-derivatives of function to classeand to study the second-order epi-derivatives of sum two convex functionand to studythe second-order epi-derivatives of Moreau-Yosida approximate function alsoto study ofthe second-order epi-derivatives of composition convex function with linear operator .


Artificial intelligence review:
Research summary
يهدف هذا البحث إلى تعميم بعض النتائج التي قدمها روكافولار في فضاءات منتهية الأبعاد إلى فضاءات باناخ عامة باستخدام مفهوم تقارب مسافة هاوسدورف بدلاً من التقارب فوق البياني. تتناول النتائج تطبيقات لدراسة المشتقات فوق البيانية من المرتبة الثانية لدوال من الصنف C2، ودراسة المشتقات فوق البيانية لمجموع دالتين محدبتين، ودراسة المشتقات فوق البيانية لدالة تقريب مورو-يوشيدا، وأيضًا دراسة المشتقات فوق البيانية لتركيب دالة محدبة مع مؤثر خطي. يتم استعراض المفاهيم الأساسية مثل التقارب فوق البياني، مسافة هاوسدورف، والمشتقات فوق البيانية، وتطبيقاتها في التحليل غير الأملس وتحليل الاستقرار في فضاءات باناخ. يقدم البحث نتائج رئيسية تتعلق بالمشتقات فوق البيانية من المرتبة الثانية لمجموع دالتين، وعلاقة المشتقات فوق البيانية لدالة محدبة مع تقريب مورو-يوشيدا، ويثبت أن دالة مورو-يوشيدا هي دالة C1 وأنها قابلة للتفريق بشكل بروتو. كما يتناول البحث دراسة المشتقات فوق البيانية لتركيب دالة محدبة مع مؤثر خطي، ويخلص إلى أن هذه النتائج يمكن تمديدها لدوال غير محدبة في فضاءات معيارية باستخدام تقارب مسافة هاوسدورف.
Critical review
دراسة نقدية: يقدم البحث إسهامًا مهمًا في تعميم نتائج التحليل فوق البياني إلى فضاءات باناخ باستخدام مسافة هاوسدورف. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة. أولاً، قد يكون من المفيد تقديم أمثلة تطبيقية أكثر تفصيلاً لتوضيح الفوائد العملية لهذه النتائج في مجالات مثل التحسين غير الأملس. ثانيًا، يمكن تعزيز الدراسة بمزيد من التجارب العددية لتأكيد صحة النتائج النظرية. ثالثًا، يمكن توسيع البحث ليشمل دراسة تأثير هذه النتائج على مشاكل التحسين في فضاءات غير معيارية. أخيرًا، قد يكون من المفيد تقديم مقارنة بين تقنيات مختلفة لتحليل التقارب فوق البياني لتحديد مزايا وعيوب كل منها بشكل أكثر وضوحًا.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي هو تعميم بعض النتائج التي قدمها روكافولار في فضاءات منتهية الأبعاد إلى فضاءات باناخ عامة باستخدام مفهوم تقارب مسافة هاوسدورف.

  2. ما هي التطبيقات التي يتناولها البحث؟

    يتناول البحث تطبيقات لدراسة المشتقات فوق البيانية من المرتبة الثانية لدوال من الصنف C2، ودراسة المشتقات فوق البيانية لمجموع دالتين محدبتين، ودراسة المشتقات فوق البيانية لدالة تقريب مورو-يوشيدا، وأيضًا دراسة المشتقات فوق البيانية لتركيب دالة محدبة مع مؤثر خطي.

  3. ما هو مفهوم التقارب الذي تم استخدامه بدلاً من التقارب فوق البياني؟

    تم استخدام مفهوم تقارب مسافة هاوسدورف بدلاً من التقارب فوق البياني.

  4. ما هي النتائج الرئيسية التي توصل إليها البحث؟

    النتائج الرئيسية تشمل المشتقات فوق البيانية من المرتبة الثانية لمجموع دالتين، وعلاقة المشتقات فوق البيانية لدالة محدبة مع تقريب مورو-يوشيدا، وإثبات أن دالة مورو-يوشيدا هي دالة C1 وأنها قابلة للتفريق بشكل بروتو.


References used
Attouch, H. : Variational convergence for functions and operators. Pitman, London, 1984
Attouch, H. ; Wets, R.J : Epigraphic analysais, analyse non linéaire. Gauthiers-Villars, paris, 1989, 73-100
Attouch, H., R.Lucchetti and Wets, R.J: The topology of -Hausdorff distance . Ann. Mat.Pura Appl.(4), 160, 1991, 303-320
rate research

Read More

This research studies the distributive solutions for some partial differential equations of second order. We study specially the distributive solutions for Laplas equation, Heat equation, wave equations and schrodinger equation. We introduce the fundamental solutions for precedent equations and inference the distributive solutions by using the convolution of distributions concept. For that we use some of lemmas and theorems with proofs, specially for Laplas equation. And precedent some of concepts, defintions and remarks.
In this paper, we study the oscillation and nonoscillation theorems for second order nonlinear difference equations. By using some important of definitions and main concepts in oscillation, in addition for lemmas, we introduce examples illustrating the relevance of the theorems discussed.
In this paper, we develop spline collocation technique for the numerical solution of general twelfth-order linear boundary value problems (BVPs). This technique based on polynomial splines from order sixteenth as well as five collocation points at every subinterval of BVPs. The method developed not only approximates the solution of BVP, but its higher order derivatives as well. We show that the spline collocation method is existent and unique when it is applied into a test problem. Also, its global truncation error is estimated. Moreover, the purposed spline method when applied to test problems will be consistent and convergent from sixteenth order. Three numerical examples are given to illustrate the applicability and efficiency of the new method. Comparisons of our results with some other methods show that our method is very effective and successful.
Most of mathematical physics problems can be translated into solve one partial differential equation or more with specific initial conditions and boundary conditions. This is called the boundary value problem for the differential equations. This paper studies the solution of systems of hyperbolic and parabolic partial differential equations assuming some boundary conditions in different domains in the plane xoy. In this paper we have proved theorem about the existence and uniqueness of the solutions. This article is considered to be a continuation to the works of Alimove, Ssallah Aldinov, Gooraev and Alhamad.......
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا