Do you want to publish a course? Click here

Approximate Solutions of Twelfth-Order Boundary Value Problems by Using Spline Technique

حلول تقريبية لمسائل القيم الحدية من المرتبة الثانية عشرة باستخدام تقنية شرائحية

1324   0   2   0.0 ( 0 )
 Publication date 2017
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we develop spline collocation technique for the numerical solution of general twelfth-order linear boundary value problems (BVPs). This technique based on polynomial splines from order sixteenth as well as five collocation points at every subinterval of BVPs. The method developed not only approximates the solution of BVP, but its higher order derivatives as well. We show that the spline collocation method is existent and unique when it is applied into a test problem. Also, its global truncation error is estimated. Moreover, the purposed spline method when applied to test problems will be consistent and convergent from sixteenth order. Three numerical examples are given to illustrate the applicability and efficiency of the new method. Comparisons of our results with some other methods show that our method is very effective and successful.



References used
AL-HAYANI W. Adomian Decomposition Method with Green’s Function for Solving Twelfth-Order Boundary Value Problems. Applied Mathematical Sciences, Vol. 9, No. 8, 2015, 353-368
ALI J., S. ISLAM, M. T. RAHIM and G. ZAMAN, The Solution of Special Twelfth Order Boundary Value Problems by the Optimal Homotopy Asymptotic Method. World Applied Sciences Journal, Vol.11, No.3, 2010, 371-378
DOHA E. H., W. M. ABD-ELHAMEED, BASSUONY M. A. On the Coefficients of Differentiated Expansions and Derivatives of Chebyshev Polynomials of the Third and Fourth Kinds. Acta Mathematica Scientia, Vol. 35B, No.2, 2015, 326–338
rate research

Read More

In this paper, the numerical solution of general linear fifth-order boundary-value problem (BVP) is considered. This problem is transformed into three initial value problems (IVPs) and then spline functions with four collocation points are applied to the three IVPs. The presented spline method enables us to find the spline solution and derivatives up to fifth-order of BVP. By giving four examples and comparing with the other methods, the efficiency and highly accurate of the method will be shown.
In this paper, a spline collocation method is developed for finding numerical solutions of general linear eighth-order boundary-value problems (BVPs) and nonlinear eighth-order initial value problems (IVPs). The presented collocation method affords t he spline solution by the polynomial of degree eleventh which satisfies the BVPs and IVPs at three collocation points. The study shows that the spline collocation method when is applied such this problems is existent and unique. Moreover, the purposed method if applied to these systems will be consistent and the global truncation error equal eleventh. Numerical results are given for four examples to illustrate the implementation and efficiency of the method. Comparisons of the results obtained by the present method with results obtained by the other methods reveal that the present method is very effective and convenient.
In this paper, spline collocation method is considered for solving two forms of problems. The first form is general linear sixth-order boundary-value problem (BVP), and the second form is nonlinear sixth-order initial value problem (IVP). The existen ce, uniqueness, error estimation and convergence analysis of purpose methods are investigated. The study shows that proposed spline method with three collocation points can find the spline solutions and their derivatives up to sixth-order of the two BVP and IVP, thus is very effective tools in numerically solving such problems. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested techniques.
In this paper, we use polynomial splines of eleventh degree with three collocation points to develop a method for computing approximations to the solution and its derivatives up to ninth order for general linear and nonlinear ninth-order boundary-v alue problems (BVPs). The study shows that the spline method with three collocation points when is applied to these problems is existent and unique. We prove that the proposed method if applied to ninth-order BVPs is stable and consistent of order eleven, and it possesses convergence rate greater than six. Finally, some numerical experiments are presented for illustrating the theoretical results and by comparing the results of our method with the other methods, we reveal that the proposed method is better than others.
This research studies the distributive solutions for some partial differential equations of second order. We study specially the distributive solutions for Laplas equation, Heat equation, wave equations and schrodinger equation. We introduce the fundamental solutions for precedent equations and inference the distributive solutions by using the convolution of distributions concept. For that we use some of lemmas and theorems with proofs, specially for Laplas equation. And precedent some of concepts, defintions and remarks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا