تم تقديم طريقة تجميع شرائحية للحل العددي لمسائل القيم الحدية الخطية في المعادلات التفاضلية المعممة من المرتبة الثانية عشرة التي تنشأ تطبيقاتها في الميكانيك و العلوم المختلفة. تعتمد التقنية المقترحة على تقريب دالة الحل بحدوديات شرائحية من الدرجة السادسة عشرة مع خمس نقاط تجميع في كل مجال جزئي من الحل. تستطيع الطريقة تقريب الحل للمسألة و تقريب مشتقاته حتى المرتبة الحادية عشرة. تم إثبات أن الطريقة المقترحة تضمن وجود و وحدانية الحل عندما تُطبَّقْ لحل بعض مسائل الاختبار. كما تم تقدير صيغة للخطأ المقتطع الشامل، حيث تبين الدراسة أن الطريقة تكون متناسقة و متقاربة بخطأ مقتطع شامل من الرتبة السادس عشرة. و لإثبات صحة النتائج النظرية قمنا باختبار الطريقة الشرائحية بحل ثلاث مسائل مختلفة، حيث تشير المقارنات لنتائجنا مع نتائج الآخرين إلى أفضلية الطريقة المقترحة من حيث الدقة و الفعالية.
In this paper, we develop spline collocation technique for the numerical solution of
general twelfth-order linear boundary value problems (BVPs). This technique based on
polynomial splines from order sixteenth as well as five collocation points at every
subinterval of BVPs. The method developed not only approximates the solution of BVP,
but its higher order derivatives as well. We show that the spline collocation method is
existent and unique when it is applied into a test problem. Also, its global truncation error
is estimated. Moreover, the purposed spline method when applied to test problems will be
consistent and convergent from sixteenth order. Three numerical examples are given to
illustrate the applicability and efficiency of the new method. Comparisons of our results
with some other methods show that our method is very effective and successful.
References used
AL-HAYANI W. Adomian Decomposition Method with Green’s Function for Solving Twelfth-Order Boundary Value Problems. Applied Mathematical Sciences, Vol. 9, No. 8, 2015, 353-368
ALI J., S. ISLAM, M. T. RAHIM and G. ZAMAN, The Solution of Special Twelfth Order Boundary Value Problems by the Optimal Homotopy Asymptotic Method. World Applied Sciences Journal, Vol.11, No.3, 2010, 371-378
DOHA E. H., W. M. ABD-ELHAMEED, BASSUONY M. A. On the Coefficients of Differentiated Expansions and Derivatives of Chebyshev Polynomials of the Third and Fourth Kinds. Acta Mathematica Scientia, Vol. 35B, No.2, 2015, 326–338
In this paper, the numerical solution of general linear fifth-order boundary-value problem (BVP) is considered. This problem is transformed into three initial value problems (IVPs) and then spline functions with four collocation points are applied to
In this paper, a spline collocation method is developed for finding numerical solutions of general linear eighth-order boundary-value problems (BVPs) and nonlinear eighth-order initial value problems (IVPs). The presented collocation method affords t
In this paper, spline collocation method is considered for solving two forms of problems. The first form is general linear sixth-order boundary-value problem (BVP), and the second form is nonlinear sixth-order initial value problem (IVP). The existen
In this paper, we use polynomial splines of eleventh degree with three collocation
points to develop a method for computing approximations to the solution and its
derivatives up to ninth order for general linear and nonlinear ninth-order boundary-v
This research studies the distributive solutions for some partial
differential equations of second order.
We study specially the distributive solutions for Laplas equation,
Heat equation, wave equations and schrodinger equation.
We introduce the