Do you want to publish a course? Click here

Solution of linear second order difference equation with variable coefficients

حل المعادلة الفرقية الخطية من المرتبة الثانية بأمثال متغيرة

2365   4   50   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research studies solving the linear second order difference equation with variable coefficients. For solving this equation we use two theorems and prove these theorems as well as we use some definitions and main concepts .


Artificial intelligence review:
Research summary
يتناول هذا البحث دراسة طرق حل المعادلة الفرقية الخطية من المرتبة الثانية بأمثال متغيرة، والتي تأخذ الشكل العام: Δ²y(x) + P(x)Δy(x) + Q(x)y(x) = R(x)، حيث P(x) وQ(x) وR(x) هي دوال تابعة للمتغير x. يتم استخدام مبرهنتين لإيجاد الحلول مع تقديم إثباتاتهما، بالإضافة إلى تعريف بعض المفاهيم الأساسية اللازمة. يتم أيضًا حل شكل آخر من المعادلات الفرقية الخطية بأمثال متغيرة والتي تأخذ الشكل: F(s + δ) = G(s)F(s)؛ δ ∈ R، مع تقديم أمثلة تطبيقية لكل شكل. يتضمن البحث أيضًا دراسة تاريخية لتطور المعادلات الفرقية واستخداماتها عبر العصور، بدءًا من البابليين وصولًا إلى العلماء الحديثين مثل ألبرت جيرارد وديموافر. يتم تقديم طرق مختلفة لحل المعادلات الفرقية من المرتبة الثانية بأمثال متغيرة، مع التركيز على المعادلات غير المتجانسة والمتجانسة. يتم استخدام دالة غاما والمعادلات فوق الهندسية كأمثلة تطبيقية. في النهاية، يوصي البحث بمتابعة دراسة حل المعادلات الفرقية غير المتجانسة بأمثال متغيرة ولكن من مراتب أعلى.
Critical review
دراسة نقدية: يعتبر هذا البحث مساهمة قيمة في مجال الرياضيات التطبيقية، حيث يقدم طرقًا مبتكرة لحل المعادلات الفرقية الخطية من المرتبة الثانية بأمثال متغيرة. ومع ذلك، يمكن تحسين البحث من خلال تقديم المزيد من الأمثلة التطبيقية الواقعية التي توضح كيفية استخدام هذه الحلول في مجالات مثل الهندسة والفيزياء. بالإضافة إلى ذلك، يمكن تعزيز القسم النظري بمزيد من الشروحات التوضيحية لتسهيل فهم المفاهيم الرياضية المعقدة على القراء غير المتخصصين. كما يُفضل تضمين دراسة مقارنة بين الطرق المختلفة لحل المعادلات الفرقية لتحديد مزايا وعيوب كل طريقة بشكل أكثر وضوحًا.
Questions related to the research
  1. ما هو الشكل العام للمعادلة الفرقية الخطية من المرتبة الثانية بأمثال متغيرة؟

    الشكل العام للمعادلة الفرقية الخطية من المرتبة الثانية بأمثال متغيرة هو: Δ²y(x) + P(x)Δy(x) + Q(x)y(x) = R(x)، حيث P(x) وQ(x) وR(x) هي دوال تابعة للمتغير x.

  2. ما هي المبرهنتين المستخدمتين في حل المعادلة الفرقية الخطية؟

    يتم استخدام مبرهنتين لإيجاد الحلول للمعادلة الفرقية الخطية من المرتبة الثانية بأمثال متغيرة، مع تقديم إثباتاتهما في البحث.

  3. ما هي دالة غاما وكيف تُستخدم في هذا البحث؟

    دالة غاما هي دالة رياضية تُستخدم في حل المعادلات الفرقية فوق الهندسية. في هذا البحث، تُستخدم دالة غاما كأداة لحل المعادلات الفرقية الخطية بأمثال متغيرة.

  4. ما هي التوصيات التي يقدمها البحث لمتابعة الدراسات المستقبلية؟

    يوصي البحث بمتابعة دراسة حل المعادلات الفرقية غير المتجانسة بأمثال متغيرة ولكن من مراتب أعلى، وذلك لتعزيز الفهم وتطوير طرق جديدة لحل هذه المعادلات.


References used
Saber N. Elaydi, An introduction to difference equations, 3rd edition, Springer 2005
AndrieD.Polyanin,AlexanderV.Manzhirov .Hand book of mathematics for engineers andscientists ,2007
V.Lakshmikantham , Marcel Dekker.Theory of difference equations,2002
rate research

Read More

In this paper, we study the oscillation and nonoscillation theorems for second order nonlinear difference equations. By using some important of definitions and main concepts in oscillation, in addition for lemmas, we introduce examples illustrating the relevance of the theorems discussed.
In this paper, the numerical solution of general linear fifth-order boundary-value problem (BVP) is considered. This problem is transformed into three initial value problems (IVPs) and then spline functions with four collocation points are applied to the three IVPs. The presented spline method enables us to find the spline solution and derivatives up to fifth-order of BVP. By giving four examples and comparing with the other methods, the efficiency and highly accurate of the method will be shown.
We aim in this research to study the existence and uniqueness of strong solution for initial-boundary values problem for a semi-linear wave equation with the nonlinear boundary dissipation, by transforming it to a Cauchy problem with second order operator differential equations in Hilbert space. Therefore, we transform it, using Green's formula for a triple of Hilbert spaces.
This research studies the distributive solutions for some partial differential equations of second order. We study specially the distributive solutions for Laplas equation, Heat equation, wave equations and schrodinger equation. We introduce the fundamental solutions for precedent equations and inference the distributive solutions by using the convolution of distributions concept. For that we use some of lemmas and theorems with proofs, specially for Laplas equation. And precedent some of concepts, defintions and remarks.
Most of mathematical physics problems can be translated into solve one partial differential equation or more with specific initial conditions and boundary conditions. This is called the boundary value problem for the differential equations. This paper studies the solution of systems of hyperbolic and parabolic partial differential equations assuming some boundary conditions in different domains in the plane xoy. In this paper we have proved theorem about the existence and uniqueness of the solutions. This article is considered to be a continuation to the works of Alimove, Ssallah Aldinov, Gooraev and Alhamad.......
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا