Do you want to publish a course? Click here

Comparative Study between background subtraction and Gaussian Mixture Model algorithms for outdoors videos

دراسة مقارنة بين طريقتي طرح الخلفية و نموذج مزيج غاوص المستخدمتين للتخلص من الخلفية في فيديوهات ملتقطة في الهواء الطلق

1129   1   40   5.0 ( 1 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Background subtraction (BS) is the first step of various computer vision application specially those depending on motion tracking such as (car tacking, human recognition…etc.).Indeed, videos captured outdoors may contain a lot of undesirable changes ‘wind impact, illumination changes, weather conditions and others ’, generate numerous false positives. This paper presents comparison between the simplest method for background extraction (background subtraction) and Gaussian Mixture Model which is common method in outdoors videos. These two method are then compared based on the ability of each one to detect moving object in outdoors videos especially with presence and absence of shadow in addition to other challenges like object movement in background, wind effect and camera instability. The results of this comparison is used to determine the suitable method for each state.


Artificial intelligence review:
Research summary
تعد عملية التخلص من الخلفية خطوة أساسية في أنظمة رؤية الآلة التي تهدف إلى عزل كائن معين والتعرف عليه، خاصة في تطبيقات تتبع الحركة مثل التعرف على الإنسان أو تتبع السيارات. يواجه التخلص من الخلفية في الفيديوهات الملتقطة في الهواء الطلق تحديات عديدة مثل تأثير الرياح والإضاءة والظروف المناخية. يقدم هذا البحث دراسة مقارنة بين طريقتين شائعتين للتخلص من الخلفية: طريقة طرح الخلفية البسيطة وطريقة نموذج مزيج غاوص. تمت المقارنة بناءً على قدرة كل طريقة على التخلص من الخلفية في فيديوهات ملتقطة في الهواء الطلق، مع التركيز على وجود أو عدم وجود ظل، بالإضافة إلى تحديات أخرى مثل حركة الأجسام في الخلفية وتأثير الرياح وعدم استقرار الكاميرا. تم استخدام نتائج هذه المقارنة لتحديد الطريقة الأنسب لتتبع الحركة في ظروف وشروط مختلفة. أظهرت النتائج أن طريقة طرح الخلفية تكون أكثر فعالية في البيئات المتحكم بها أو تلك التي تكون فيها الحركة النسبية للخلفية صغيرة، بينما كانت طريقة نموذج مزيج غاوص أكثر كفاءة في البيئات غير المستقرة أو التي تحتوي على ظل.
Critical review
دراسة نقدية: يعد هذا البحث خطوة مهمة في مجال معالجة الفيديو وتحديداً في التخلص من الخلفية. ومع ذلك، يمكن انتقاد البحث من عدة جوانب. أولاً، لم يتم التطرق بشكل كافٍ إلى تأثير نوعية الكاميرا ودقتها على أداء الطريقتين المقارنتين. ثانياً، كان من الممكن تضمين مجموعة أوسع من الظروف البيئية لاختبار الطريقتين بشكل أكثر شمولية. ثالثاً، لم يتم التطرق إلى تأثير حجم الكائنات المتحركة وسرعتها على دقة الطريقتين. وأخيراً، كان من الممكن تحسين البحث من خلال استخدام تقنيات حديثة مثل التعلم العميق لتحسين دقة التخلص من الخلفية.
Questions related to the research
  1. ما هي التحديات الرئيسية التي تواجه التخلص من الخلفية في الفيديوهات الملتقطة في الهواء الطلق؟

    تشمل التحديات الرئيسية تأثير الرياح، تغيرات الإضاءة، الظروف المناخية، وحركة الأجسام في الخلفية وعدم استقرار الكاميرا.

  2. ما هي الطريقتان الرئيسيتان اللتان تمت مقارنتهما في البحث؟

    الطريقتان هما طريقة طرح الخلفية البسيطة وطريقة نموذج مزيج غاوص.

  3. في أي ظروف تكون طريقة طرح الخلفية أكثر فعالية؟

    تكون طريقة طرح الخلفية أكثر فعالية في البيئات المتحكم بها أو تلك التي تكون فيها الحركة النسبية للخلفية صغيرة.

  4. ما هي الطريقة الأكثر كفاءة في البيئات غير المستقرة أو التي تحتوي على ظل؟

    طريقة نموذج مزيج غاوص هي الأكثر كفاءة في البيئات غير المستقرة أو التي تحتوي على ظل.


References used
B. a. S. B. Horn, "Determining optical flow.," Artificial Intelligence, vol. 17, no. 1, pp. 185- 203, 1981
Q. Z. a. J. Aggarwal, "Tracking and classifying moving objects from video," in Performance Evaluation of Tracking Systems Workshop, 2001
B. A. Smith, Determination of Normal or Abnormal Gait Using a Two Dimensional Video Camera, Blacksburg,Virginia: Polytechnic Institute and State University, 2007
rate research

Read More

Dental caries increasingly affects the children nowadays. Statistics concerning caries prevalence aim to guide and improve the prevention of dental caries. Objective: The purpose of this study is to assess the prevalence of dental caries in the posterior primary teeth depending on the presence of decay, missing due to caries or filling.
This paper, intended for the ISA-17 Quantification Annotation track, provides background information for the shared quantification annotation task at the ISA-17 workshop, a.k.a. the Quantification Challenge. In particular, the role of the abstract an d concrete syntax of the QuantML markup language are explained, and the semantic interpretation of QuantML annotations in relation to the ISO principles of semantic annotation. Additionally, the choice is motivated of the test suite of the Quantification Challenge, along with the suggested markables for the sentences of the suite.
The pelvis anatomy and position, interact with the lumbar spinal organization in shape and position to regulate the sagittal balance between both the lumbar spine and pelvis. Sagittal lumbar-pelvic balance of the human body may be analyze by a pelvic parameters ( pelvic incidence (PI), and sacral slope (SS)) and shape of the spine (lumbar lordosis (LL) and spinal morphologic type). Hamstring muscle tightness (HMT) causes rotating backward the pelvis (retroversion) which decrease lumbar lordosis. We measure PI, SS, lumbar lordosis and spine type on lateral radiographs of 21 patients with lumbar disc herniation (LDH) and 50 spinal healthy subjects and evaluate HMT by straight-leg-raising test (SLR-test). The lumbar-pelvis parameters for patients with DH demonstrated to have a mean PI, SS and LL equal to 48.85°, 37.9°and 47.28°, respectively, versus 52.24°, 42.88° and 59.24°, respectively, for the control group. Patients with a LDH were characterized to have PI, SS and LL significantly lower than the control group. Also DH group has a mean SLR-test equal to 74.85°, significantly lower than control group (82.24°). We notice also that spine type I and type II are more frequently in DH group. All results give that DH group has vertical spine more than control one, which mean that the DH patients have vertical pressure on lumbar discs more than normal subjects.
Cross-attention is an important component of neural machine translation (NMT), which is always realized by dot-product attention in previous methods. However, dot-product attention only considers the pair-wise correlation between words, resulting in dispersion when dealing with long sentences and neglect of source neighboring relationships. Inspired by linguistics, the above issues are caused by ignoring a type of cross-attention, called concentrated attention, which focuses on several central words and then spreads around them. In this work, we apply Gaussian Mixture Model (GMM) to model the concentrated attention in cross-attention. Experiments and analyses we conducted on three datasets show that the proposed method outperforms the baseline and has significant improvement on alignment quality, N-gram accuracy, and long sentence translation.
The study aims at comparing ARIMA models and the exponential smoothing method in forecasting. This study also highlights the special and basic concepts of ARIMA model and the exponential smoothing method. The comparison focuses on the ability of both methods to forecast the time series with a narrow range of one point to another and the time series with a long range of one point to another, and also on the different lengths of the forecasting periods. Currency exchange rates of Shekel to American dollar were used to make this comparison in the period between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were considered in the period between 10/1/2010 to 23/10/2016. RMSE standard was used in order to compare between both methods. In this study, the researcher came up with the conclusion that ARIMA models give a better forecasting for the time series with a long range of one point to another and for long term forecasting, but cannot produce a better forecasting for time series with a narrow range of one point to another as in currency exchange prices. On the contrary, exponential smoothing method can give better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while it cannot give better forecasting for long term forecasting periods
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا