نقدم في هذا البحث خوارزمية فعالة لإيجاد المسار الأقصر في بيان متعدد المنابع, و ذلك باختيار المسار بين المنبع و المسافة التي تعطي طول المسار الأقل وصولا إلى المصب. تعتمد هذه الخوارزمية على مبدأ التكرار للوصول إلى الحل الأمثل لمسألة المسار الأقصر, حيث يتم تكرار خطوات الخوارزمية على جميع الأسهم في البيان. أثبتنا بأن زمن تنفيذ الخوارزمية المقترحة في هذا البحث هو زمن خطي قدره (O(n+L و هو يعتبر أفضل أزمنة الخوارزميات على الإطلاق.
In this paper, we introduce an Effective algorithm to find the
shortest path in Multiple – Source Graph, by choosing the path
between the source and the distance that gives at least the length of
the path down to the sink. This algorithm is based on the principle
of iteration to access the optimal solution of the shortest-path
problem, Where the algorithm steps are repeated for all the darts in
the Graph. We proved that the time of implementation of the
proposed algorithm in this paper is linear time O(n+L) and This is
considered the best times of the algorithms at all.
Artificial intelligence review:
Research summary
يقدم هذا البحث خوارزمية فعالة لإيجاد المسار الأقصر في بيان متعدد المنابع، وذلك من خلال اختيار المسار بين المنبع والمسافة التي تعطي طول المسار الأقل وصولاً إلى المصب. تعتمد الخوارزمية على مبدأ التكرار للوصول إلى الحل الأمثل لمسألة المسار الأقصر، حيث يتم تكرار خطوات الخوارزمية على جميع الأسهم في البيان. أثبتت الدراسة أن زمن تنفيذ الخوارزمية هو زمن خطي قدره O(n + L)، مما يجعلها من أفضل الخوارزميات المتاحة. تتضمن الخوارزمية خطوتين أساسيتين: استبدال السهم بالسهم المعاكس له، وزيادة طول السهم المعاكس تدريجياً حتى يصل إلى طوله الأصلي. يتم تكرار هذه الخطوات على جميع الأسهم في البيان. تتميز الخوارزمية بسهولة التنفيذ وقلة عدد الخطوات اللازمة، مما يجعلها مناسبة للتطبيق في شبكات الأعمال المختلفة.
Critical review
دراسة نقدية: على الرغم من أن الخوارزمية المقترحة تقدم حلاً فعالاً لمسألة المسار الأقصر بزمن خطي، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم التطرق بشكل كافٍ إلى كيفية التعامل مع البيانات الكبيرة والمعقدة التي قد تحتوي على عدد كبير من العقد والأقواس. ثانياً، لم يتم تقديم تحليل شامل لكيفية تأثير التغيرات في الأوزان على أداء الخوارزمية. ثالثاً، يمكن تحسين الخوارزمية لتكون أكثر تكيفاً مع الشبكات الديناميكية التي تتغير فيها الأوزان بشكل مستمر. وأخيراً، يمكن تقديم المزيد من الأمثلة العملية والتطبيقات الواقعية لتوضيح فعالية الخوارزمية بشكل أفضل.
Questions related to the research
-
ما هي الخطوتين الأساسيتين في الخوارزمية المقترحة؟
الخطوتين الأساسيتين هما استبدال السهم بالسهم المعاكس له، وزيادة طول السهم المعاكس تدريجياً حتى يصل إلى طوله الأصلي.
-
ما هو زمن تنفيذ الخوارزمية المقترحة؟
زمن تنفيذ الخوارزمية المقترحة هو زمن خطي قدره O(n + L).
-
ما هي التطبيقات العملية لمسألة المسار الأقصر؟
تملك مسألة المسار الأقصر تطبيقات عملية متعددة مثل شبكات النقل، شبكات الطرق، السكك الحديدية، شبكات التدفق (كهرباء، ماء، نفط، معلومات)، وشبكات الاتصالات.
-
ما هي ميزات الخوارزمية المقترحة؟
من أهم ميزات الخوارزمية المقترحة هي بساطة التنفيذ، الزمن الخطي للتنفيذ، قلة عدد الخطوات اللازمة، وصلاحيتها لجميع أنواع الشبكات مهما كان حجمها.
References used
A. Kolokolova " Bellman-Ford algorithm" Applied Algorithms February 14, 2012
Chandy. K. M and Misra. J " Distributed Computation on Graphs: Shortest Path Algorithms" Communications of the ACM , Volume 25, Number I 1, November 1982
(Dijkstra. . W, "A note on two problems in connexion with graphs", Numer Math 1, 269–271. (1959
The all-nodes shortest paths problem is undoubtedly one of
the most basic problems in algorithmic graph theory. In this paper,
we introduce simple and efficient algorithm for all nodes shortest
paths problem for directed (undirected) graphs. In th
The shortest path problem can be categorized in to two
different problems; single source shortest path problem (SSSP) and
all pair shortest algorithm (APSP). In this paper, analysis and
comparison between complexity of the famous shortest path
al
This paper illustrates a design of linear array antenna equal space and non uniform
excitation using Dolph – Chebyshev method , We will discuss the designing procedure
for antenna array having odd or even number of elements at two different values
We define a linear pregroup parser, by applying some key modifications to the minimal parser defined in (Preller, 2007). These include handling words as separate blocks, and thus respecting their syntactic role in the sentence. We prove correctness o
The graph-theoretical thickness (shortly thickness)of graph G,
denoted by Φ(G), is the minimum number of planar subgraphs into
which the graph can be decomposed, and a graph that can be
drawn in the plane without any of its edges intersecting is c