مسألة المسار الأقصر لجميع العقد في البيان هي , بلا شك , واحدة من أكثر المسائل الأساسية في خوارزميات نظرية البيان . نقدم في هذا البحث خوارزمية بسيطة و فعالة من أجل مسألة المسارات الأقصر في بيان موجه ( أو غير موجه ) . في هذه المسألة نقوم بإيجاد المسار الأقصر من عقدة منبع معطاة إلى جميع العقد الأخرى في هذا البيان و الذي يكون المسار الأقصر فيه هو المسار الذي يملك أقل كلفة ( أي مجموع أوزان الأضلاع ) . أثبتنا بأن تعقيد الخوارزمية المقترحة في هذا البحث يعتمد فقط على أضلاع البيان , و بينا بأن زمن تنفيذها هو زمن خطي قدره (O(m , و هذا يعتبر أفضل أزمنة الخوارزميات على الإطلاق . ثم أجرينا مقارنة بين تعقيد الخوارزمية المقترحة و تعقيد الخوارزمية المقترحة هو الأفضل .
The all-nodes shortest paths problem is undoubtedly one of
the most basic problems in algorithmic graph theory. In this paper,
we introduce simple and efficient algorithm for all nodes shortest
paths problem for directed (undirected) graphs. In this problem, we
find the shortest path from a given source node to all other nodes in
the graph, in which the shortest path is a path with minimum cost,
i.e., sum of the edge weights.
We proved that the complexity of the proposed algorithm in
this paper depends only on the edges graph, and we show that the
time of implementation of this algorithm is linear time O(m) and
This is considered the best times of the algorithms at all. And
a Comparison between complexity of proposed algorithm and the
famous shortest path algorithms have been made, and the obtained
results have shown that the complexity of the proposed algorithm
is best.
Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية مسألة إيجاد المسارات الأقصر لجميع العقد في بيان موجه أو غير موجه. يقدم الباحث د. محسن حسين خوارزمية جديدة وفعالة لهذه المسألة، حيث يتم إيجاد المسار الأقصر من عقدة منبع معينة إلى جميع العقد الأخرى في البيان. تعتمد الخوارزمية المقترحة على زمن خطي قدره O(m)، مما يجعلها من أفضل الخوارزميات من حيث زمن التنفيذ. تم إجراء مقارنة بين تعقيد الخوارزمية المقترحة وتعقيد الخوارزميات الشهيرة الأخرى، وتبين أن الخوارزمية المقترحة هي الأفضل. كما تم تقديم مثال توضيحي لعمل الخوارزمية وتحليل شامل لدرجة تعقيدها وزمن تنفيذها. الخوارزمية المقترحة تتميز بأنها بسيطة وسهلة التنفيذ ويمكن برمجتها حاسوبياً بسهولة، كما يمكن تطبيقها على بيانات كبيرة الحجم.
Critical review
دراسة نقدية: تعتبر هذه الورقة البحثية إضافة قيمة لمجال نظرية البيان وخوارزميات المسار الأقصر. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن تقديم المزيد من الأمثلة العملية لتوضيح كيفية تطبيق الخوارزمية على بيانات حقيقية. ثانياً، لم يتم التطرق بشكل كافٍ إلى كيفية تعامل الخوارزمية مع البيانات التي تحتوي على أوزان سالبة، وهو ما يمكن أن يكون تحدياً في بعض التطبيقات. أخيراً، كان من الممكن تقديم تحليل أكثر تفصيلاً لمقارنة الأداء بين الخوارزمية المقترحة والخوارزميات الأخرى في ظروف مختلفة.
Questions related to the research
-
ما هي المسألة الرئيسية التي تتناولها الورقة البحثية؟
المسألة الرئيسية هي إيجاد المسارات الأقصر لجميع العقد في بيان موجه أو غير موجه.
-
ما هو زمن تنفيذ الخوارزمية المقترحة؟
زمن تنفيذ الخوارزمية المقترحة هو زمن خطي قدره O(m).
-
ما هي الميزة الرئيسية للخوارزمية المقترحة مقارنة بالخوارزميات الأخرى؟
الميزة الرئيسية هي أن زمن تنفيذها خطي، مما يجعلها من أفضل الخوارزميات من حيث زمن التنفيذ.
-
هل يمكن تطبيق الخوارزمية على بيانات كبيرة الحجم؟
نعم، يمكن تطبيق الخوارزمية على بيانات كبيرة الحجم لأن زمن تنفيذها لا يعتمد على عدد العقد في البيان.
References used
Allulli. L, Lichodzijewski .P and Zeh. N, "A Faster Cache- Oblivious Shortest-Path Algorithm for Undirected Graphs with Bounded Edge Lengths", www.web.cs.dal.ca
BASWANA. S AND KAVITHA. T, "FASTER ALGORITHMS FOR ALL-PAIRS APPROXIMATE SHORTEST PATHS IN UNDIRECTED GRAPHs", Jornal of ACM,52(1), pp 1- 24. 2005. www.cse.iitk.ac.in
Bernstein. A, "Near Linear Time (1 + ϵ)-Approximation for Restricted Shortest Paths in Undirected Graphs", siam, 2011
Brandes. U, "A Faster Algorithm for Betweenness Centrality", Journal of Mathematical Sociology 25(2):163-177, (2001)
In this paper, we introduce an Effective algorithm to find the
shortest path in Multiple – Source Graph, by choosing the path
between the source and the distance that gives at least the length of
the path down to the sink. This algorithm is based
The graph-theoretical thickness (shortly thickness)of graph G,
denoted by Φ(G), is the minimum number of planar subgraphs into
which the graph can be decomposed, and a graph that can be
drawn in the plane without any of its edges intersecting is c
There has been a clear and rapid development in signal processing systems,
this development comes as a result of the availability of modern techniques
in electronic systems and also as a result of achieving mathematical
algorithms which were effec
The shortest path problem can be categorized in to two
different problems; single source shortest path problem (SSSP) and
all pair shortest algorithm (APSP). In this paper, analysis and
comparison between complexity of the famous shortest path
al
As it’s known, The Graph k-Colorability Problem (GCP) is a wellknown
NP-Hard Problem. This problem consists in finding the k
minimum number of colors to paint the vertices of a graph in such a way
that any two adjoined vertices, which are connecte