Do you want to publish a course? Click here

An efficient algorithm for finding a shortest paths for all vertices in graph

خوارزمية فعالة لإيجاد المسارات الأقصر لجميع العقد في البيان

4155   1   128   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by zeina alrostum




Ask ChatGPT about the research

The all-nodes shortest paths problem is undoubtedly one of the most basic problems in algorithmic graph theory. In this paper, we introduce simple and efficient algorithm for all nodes shortest paths problem for directed (undirected) graphs. In this problem, we find the shortest path from a given source node to all other nodes in the graph, in which the shortest path is a path with minimum cost, i.e., sum of the edge weights. We proved that the complexity of the proposed algorithm in this paper depends only on the edges graph, and we show that the time of implementation of this algorithm is linear time O(m) and This is considered the best times of the algorithms at all. And a Comparison between complexity of proposed algorithm and the famous shortest path algorithms have been made, and the obtained results have shown that the complexity of the proposed algorithm is best.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية مسألة إيجاد المسارات الأقصر لجميع العقد في بيان موجه أو غير موجه. يقدم الباحث د. محسن حسين خوارزمية جديدة وفعالة لهذه المسألة، حيث يتم إيجاد المسار الأقصر من عقدة منبع معينة إلى جميع العقد الأخرى في البيان. تعتمد الخوارزمية المقترحة على زمن خطي قدره O(m)، مما يجعلها من أفضل الخوارزميات من حيث زمن التنفيذ. تم إجراء مقارنة بين تعقيد الخوارزمية المقترحة وتعقيد الخوارزميات الشهيرة الأخرى، وتبين أن الخوارزمية المقترحة هي الأفضل. كما تم تقديم مثال توضيحي لعمل الخوارزمية وتحليل شامل لدرجة تعقيدها وزمن تنفيذها. الخوارزمية المقترحة تتميز بأنها بسيطة وسهلة التنفيذ ويمكن برمجتها حاسوبياً بسهولة، كما يمكن تطبيقها على بيانات كبيرة الحجم.
Critical review
دراسة نقدية: تعتبر هذه الورقة البحثية إضافة قيمة لمجال نظرية البيان وخوارزميات المسار الأقصر. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن تقديم المزيد من الأمثلة العملية لتوضيح كيفية تطبيق الخوارزمية على بيانات حقيقية. ثانياً، لم يتم التطرق بشكل كافٍ إلى كيفية تعامل الخوارزمية مع البيانات التي تحتوي على أوزان سالبة، وهو ما يمكن أن يكون تحدياً في بعض التطبيقات. أخيراً، كان من الممكن تقديم تحليل أكثر تفصيلاً لمقارنة الأداء بين الخوارزمية المقترحة والخوارزميات الأخرى في ظروف مختلفة.
Questions related to the research
  1. ما هي المسألة الرئيسية التي تتناولها الورقة البحثية؟

    المسألة الرئيسية هي إيجاد المسارات الأقصر لجميع العقد في بيان موجه أو غير موجه.

  2. ما هو زمن تنفيذ الخوارزمية المقترحة؟

    زمن تنفيذ الخوارزمية المقترحة هو زمن خطي قدره O(m).

  3. ما هي الميزة الرئيسية للخوارزمية المقترحة مقارنة بالخوارزميات الأخرى؟

    الميزة الرئيسية هي أن زمن تنفيذها خطي، مما يجعلها من أفضل الخوارزميات من حيث زمن التنفيذ.

  4. هل يمكن تطبيق الخوارزمية على بيانات كبيرة الحجم؟

    نعم، يمكن تطبيق الخوارزمية على بيانات كبيرة الحجم لأن زمن تنفيذها لا يعتمد على عدد العقد في البيان.


References used
Allulli. L, Lichodzijewski .P and Zeh. N, "A Faster Cache- Oblivious Shortest-Path Algorithm for Undirected Graphs with Bounded Edge Lengths", www.web.cs.dal.ca
BASWANA. S AND KAVITHA. T, "FASTER ALGORITHMS FOR ALL-PAIRS APPROXIMATE SHORTEST PATHS IN UNDIRECTED GRAPHs", Jornal of ACM,52(1), pp 1- 24. 2005. www.cse.iitk.ac.in
Bernstein. A, "Near Linear Time (1 + ϵ)-Approximation for Restricted Shortest Paths in Undirected Graphs", siam, 2011
Brandes. U, "A Faster Algorithm for Betweenness Centrality", Journal of Mathematical Sociology 25(2):163-177, (2001)
rate research

Read More

In this paper, we introduce an Effective algorithm to find the shortest path in Multiple – Source Graph, by choosing the path between the source and the distance that gives at least the length of the path down to the sink. This algorithm is based on the principle of iteration to access the optimal solution of the shortest-path problem, Where the algorithm steps are repeated for all the darts in the Graph. We proved that the time of implementation of the proposed algorithm in this paper is linear time O(n+L) and This is considered the best times of the algorithms at all.
The graph-theoretical thickness (shortly thickness)of graph G, denoted by Φ(G), is the minimum number of planar subgraphs into which the graph can be decomposed, and a graph that can be drawn in the plane without any of its edges intersecting is c alled a planar graph. determining the thickness of a given graph is known to be an NP-complete problem. In this paper we introduce an application heuristic algorithm for determining the thickness. Our algorithm is based on simulated annealing optimization scheme which provide the results of the New-thick (1). We show that the simulated annealing is a efficient method to obtain good approximation for the thickness when the number vertices are at most 30 otherwise it is slower. Finally, we apply this algorithm on the heuristic algorithm Newthick and we show that the algorithm produces a good approximation and optimization solution for the thickness, and we program this algorithm with C++, and running it by laptop has RAM 2GB and CPU 2.27GHZ.
There has been a clear and rapid development in signal processing systems, this development comes as a result of the availability of modern techniques in electronic systems and also as a result of achieving mathematical algorithms which were effec tive and perfect for signal processing. One of the most important application in signal processing is the digital image processing techniques. Sampling process is regarded as one of the basic and important operations in signal processing, from which we obtain samples that can represent the original image in perfect way. We present in this essay an affective algorithm which helps to arrange onedimensional samples from two- dimensional samples image. This enables to obtain a series of samples which has an ability of representing images with concern of their general structure. Also the neighborhood correlation of image points is respected, in addition to carrying out the subsequent treatments with less mathematical cost.
The shortest path problem can be categorized in to two different problems; single source shortest path problem (SSSP) and all pair shortest algorithm (APSP). In this paper, analysis and comparison between complexity of the famous shortest path al gorithms have been made, and the obtained results have shown that researchers have got remarkable success in designing better algorithms in the terms of time complexity to solve shortest path algorithms.
As it’s known, The Graph k-Colorability Problem (GCP) is a wellknown NP-Hard Problem. This problem consists in finding the k minimum number of colors to paint the vertices of a graph in such a way that any two adjoined vertices, which are connecte d by an edge, have always different colors. In another words how can we color the edges of a graph in such a way that any two edges joined by a vertex have always different colors? In this paper we introduce a new effective algorithm for coloring the edges of the graph. Our proposed algorithm enables us to achieve a Continuously Edge Coloring (CEC) for a set of known graphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا