Do you want to publish a course? Click here

Using Open Sources for Developing Arabic Ontology

استخدام المصادر المفتوحة في بناء انطولوجيا باللغة العربية

3245   1   79   0 ( 0 )
 Publication date 2013
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The ability to search the Web sites has become essential for many people. However many sites have problems in giving the user the needed information. Search operations are typically limited to keyword searches and do not take into consideration the underlying semantics of the content.The present technologies support most languages; Though Arabic is still not well supported. One of the main application areas of Ontology technology is semantics. Although there are many tools for developing Ontology’s in many languages, Arabic WordNet seems to be the only one that supports Arabic language. In this paper we will define the necessary steps to develop Arabic Ontology for university sites using Arabic WordNet, and check that the developed Ontology is clean.


Artificial intelligence review:
Research summary
يتناول هذا البحث أهمية استخدام الأنطولوجيا في تحسين عمليات البحث على مواقع الإنترنت باللغة العربية، حيث يواجه المستخدمون صعوبة في الوصول إلى المعلومات المطلوبة بسبب عدم مراعاة معاني الكلمات ومدلولاتها خلال عمليات البحث. يركز البحث على تطوير أنطولوجيا عربية باستخدام أداة Arabic WordNet، وهي أداة مفتوحة المصدر تُستخدم لبناء أنطولوجيا تدعم اللغة العربية. يحدد البحث الخطوات اللازمة لتطوير الأنطولوجيا واستخدامها في مواقع الجامعات، بالإضافة إلى التأكد من نظافتها وتقييم أداء عملية البحث بعد تطبيقها. تم إجراء البحث في جامعة تشرين بين يونيو وسبتمبر 2012، وأظهرت النتائج تحسنًا كبيرًا في دقة نتائج البحث بعد تطبيق الأنطولوجيا، مما يعزز أهمية استخدامها في تحسين استخلاص المعلومات وتسهيل الوصول إليها.
Critical review
دراسة نقدية: يعد هذا البحث خطوة مهمة نحو تحسين عمليات البحث باللغة العربية على الإنترنت، ولكنه يواجه بعض التحديات. أولاً، الاعتماد على أداة واحدة مفتوحة المصدر مثل Arabic WordNet قد يكون محدودًا من حيث التغطية والشمولية. ثانياً، لم يتناول البحث بشكل كافٍ كيفية التعامل مع التحديثات المستمرة في اللغة والمصطلحات الجديدة التي قد تظهر. ثالثاً، كان من الأفضل تضمين دراسة مقارنة مع أدوات أخرى لبناء الأنطولوجيا لتقديم صورة أكثر شمولية عن الفوائد والعيوب. وأخيراً، قد يكون من المفيد إجراء اختبارات ميدانية على نطاق أوسع لضمان فعالية الأنطولوجيا في مختلف المجالات والتطبيقات.
Questions related to the research
  1. ما هي الأداة المستخدمة في البحث لتطوير الأنطولوجيا العربية؟

    الأداة المستخدمة هي Arabic WordNet، وهي أداة مفتوحة المصدر تدعم اللغة العربية.

  2. ما هي الفترة الزمنية التي تم فيها إجراء البحث؟

    تم إجراء البحث في جامعة تشرين بين 1 يونيو و15 سبتمبر 2012.

  3. ما هي الفائدة الرئيسية من استخدام الأنطولوجيا في مواقع الجامعات؟

    الفائدة الرئيسية هي تحسين دقة نتائج البحث وتسهيل وصول المستخدمين إلى المعلومات المطلوبة.

  4. ما هي الخطوة الأولى في تطوير الأنطولوجيا وفقًا للبحث؟

    الخطوة الأولى هي تحديد المجال ومدى الاتساع الذي ستغطيه الأنطولوجيا.


References used
Taye, M. Ontology Alignment Mechanisms for Improving Web-basedSearching.- United Kingdom,England: De Montfort University, 2009.271 pages
Wilson, R. The Role of Ontologies in Teaching and Learning.-n.p: Ruth Wilson, 2004.16 pages
Kim, H. et al. Implementing an Ontology-Based Knowledge Management System in Korean Financial Firm Environment.-Seoul,Korea:MyongjiUniversity, 2006.10 pages
rate research

Read More

There are many methods and suggestions proposed to improve the efficiency of search in order to catch up with the increasing speed of information boom on the web. Most of these proposals are concentrated on term frequency and page rank algorithms a nd yet very few of them focus on semantic relationship of content. The objective of this research project is to provide a semantic relationship model that can be used for semi-structured or unstructured information on the web to help improve the accuracy and efficiency of search engine.
With the increasing growth in popularity of Web services and SOA, discovering relevant Web services becomes a significant challenge. The introduction of intentional services is necessary to bridge the gap between low level, technical software-servi ce descriptions and high level, strategic expressions of business needs for services. Current Web Services technology based on UDDI and WSDL does not make use of this “intention” and therefore fails to address the problem of matching between capabilities of services and business user needs. This work addresses the problem of intentional semantic web service search in Arabic, where a novel approach is proposed for partitioning user goals based on Arabic verb ontology, in addition to showing a practical example about the effect of applying verb ontology in intentional web service search.
Natural language modelling has gained a lot of interest recently. The current state-of-the-art results are achieved by first training a very large language model and then fine-tuning it on multiple tasks. However, there is little work on smaller more compact language models for resource-limited devices or applications. Not to mention, how to efficiently train such models for a low-resource language like Arabic. In this paper, we investigate how such models can be trained in a compact way for Arabic. We also show how distillation and quantization can be applied to create even smaller models. Our experiments show that our largest model which is 2x smaller than the baseline can achieve better results on multiple tasks with 2x less data for pretraining.
This paper presents ArOntoLearn, a Framework for Arabic Ontology learning from textual resources. Supporting Arabic language and using domain knowledge in the learning process are the main features of our framework. Besides it represents the learne d ontology in Probabilistic Ontology Model (POM), which can be translated into any knowledge representation formalism, and implements data-driven change discovery. Therefore it updates the POM according to the corpus changes only, and allows user to trace the evolution of the ontology with respect to the changes in the underlying corpus. Our framework analyses Arabic textual resources, and matches them to Arabic Lexico-syntactic patterns in order to learn new Concepts and Relations. Supporting Arabic language is not that easy task, because current linguistic analysis tools are not efficient enough to process unvocalized Arabic corpuses that rarely contain appropriate punctuation. So we tried to build a flexible and freely configured framework whereas any linguistic analysis tool can be replaced by more sophisticated one whenever it is available.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا