Do you want to publish a course? Click here

Face Expression Classification Using Neural Network and PCA algorithm

تصنيف تعابير الوجه باستخدام شبكة عصبية وخوارزمية PCA

4989   10   204   5.0 ( 1 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The purpose of this article is to shed light on the mechanism and the procedures of a program that classifies an input face into any of the six basic facial expressions, which are Anger, Disgust, Fear, Happiness, Sadness and Surprise, in addition to normal face. This program works by apply PCA- principal component analysis algorithm, which is applied of one side of the face, and depends, on contrast to the traditional studies which rely on the whole face, on three components: Eyebrows, Eyes and Mouth. Those out-value are used to determine the facial feature array as an input to the neural network, and the neural network is trained by using the back-propagation algorithm. Note that the faces used in this study belong to people from different ages and races.


Artificial intelligence review:
Research summary
يهدف هذا البحث إلى تطوير نظام خبير لتصنيف تعابير الوجه باستخدام خوارزمية تحليل المكونات الأساسية (PCA) والشبكات العصبية. يتم التركيز على ثلاثة عناصر رئيسية في الوجه وهي العين، الحاجب، والفم بدلاً من تحليل الوجه بالكامل. يتم استخراج شعاع الصفات من هذه العناصر واستخدامه كمدخل للشبكة العصبية التي تُدرّب باستخدام خوارزمية الانتشار الخلفي. تم اختبار النظام على مجموعة متنوعة من الوجوه من أعمار وأعراق مختلفة، وحقق النظام دقة تصنيف تصل إلى 91.2%، مما يجعله متفوقاً على بعض الطرق الأخرى المستخدمة في هذا المجال. تعتمد الطريقة المقترحة على تقسيم المناطق الفعالة من الوجه إلى أجزاء صغيرة لتقليل التشويش وتحسين دقة التصنيف.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم نتائج جيدة في تصنيف تعابير الوجه باستخدام خوارزمية PCA والشبكات العصبية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، الاعتماد على أجزاء محددة من الوجه قد يؤدي إلى فقدان بعض المعلومات الهامة التي يمكن أن تكون موجودة في أجزاء أخرى من الوجه. ثانياً، استخدام خوارزمية PCA قد يكون محدوداً في التعامل مع البيانات غير الخطية بشكل كامل، ويمكن استكشاف تقنيات أخرى مثل خوارزميات التعلم العميق لتحسين الأداء. أخيراً، لم يتم التطرق بشكل كافٍ إلى كيفية التعامل مع الصور ذات الجودة المنخفضة أو الصور التي تحتوي على تشويش كبير، وهو ما يمكن أن يؤثر على دقة التصنيف في التطبيقات العملية.
Questions related to the research
  1. ما هي العناصر الثلاثة الرئيسية التي تم التركيز عليها في تحليل تعابير الوجه في هذا البحث؟

    العناصر الثلاثة الرئيسية هي العين، الحاجب، والفم.

  2. ما هي الخوارزمية المستخدمة لاستخلاص شعاع الصفات من الوجه؟

    الخوارزمية المستخدمة هي خوارزمية تحليل المكونات الأساسية (PCA).

  3. ما هي دقة التصنيف التي حققها النظام المقترح في هذا البحث؟

    النظام حقق دقة تصنيف تصل إلى 91.2%.

  4. ما هي خوارزمية التدريب المستخدمة في الشبكة العصبية؟

    خوارزمية التدريب المستخدمة هي خوارزمية الانتشار الخلفي.


References used
CALDER A, BURTON A, MILLER P, YOUNG A, AKAMATSU S, 2001- A principal component analysis of facial expressions. Vision Research 41 (2001) 1179–1208
DAILEY M, COTTRELL G,1999- PCA = Gabor for Expression Recognition. Computer Science and Engineering, University of California, San Diego
THAI L,NGUYEN N, HAI T, Member, IACSIT,2011- A Facial Expression Classification System Integrating Canny, Principal Component Analysis and Artificial Neural Network. International Journal of Machine Learning and Computing, Vol. 1, No. 4
GARG A, CHOUDHARY V, 2012- facial expression recognition using principal component analysis. International Journal of Scientific Research Engineering &Technology , Volume 1 Issue4, pp 039-042
GOSAVI A, KHOT S, 2013- Facial Expression Recognition Using Principal Component Analysis. International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3, Issue-4
rate research

Read More

The purpose of this article is to shed light on the mechanism and the procedures of a neuro-fuzzy controller that classifies an input face into any of the four facial expressions, which are Happiness, Sadness, Anger and Fear. This program works a ccording to the facial characteristic points-FCP which is taken from one side of the face, and depends, in contrast with some traditional studies which rely on the whole face, on three components: Eyebrows, Eyes and Mouth.
The evaporation is one of the basic components of the hydrologic cycle and it is essential for studies such as water balance, irrigation system design and water resource management, and it requires knowledge of many climatic variables. Although, th ere are many empirical formulas available for evaporation estimate, but their performances are not all satisfactory due to the complicated nature of the evaporation process. Accordingly, this paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from HAMA by using temperature, relative humidity and wind velocity. The mathematical model was built by the (nntool-box), which is one of the MATLAB tools. The feed forward back propagation network with one hidden layer has been utilised to construct the model. Different networks with different number of neurons were evaluated. Root Mean Squared Error (RMSE) was employed to evaluate the accuracy of the proposed model. The study shows that ANN (3-14-1) was the best model with RMSE (21.5mm/month) and R2 (0.97). This study suggests using other types of neural networks for estimation of evaporation
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR ) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
To transcribe spoken language to written medium, most alphabets enable an unambiguous sound-to-letter rule. However, some writing systems have distanced themselves from this simple concept and little work exists in Natural Language Processing (NLP) o n measuring such distance. In this study, we use an Artificial Neural Network (ANN) model to evaluate the transparency between written words and their pronunciation, hence its name Orthographic Transparency Estimation with an ANN (OTEANN). Based on datasets derived from Wikimedia dictionaries, we trained and tested this model to score the percentage of false predictions in phoneme-to-grapheme and grapheme-to-phoneme translation tasks. The scores obtained on 17 orthographies were in line with the estimations of other studies. Interestingly, the model also provided insight into typical mistakes made by learners who only consider the phonemic rule in reading and writing.
This study includes the possibility of using Artificial neural networks (ANNs) with back-propagation algorithm in a short-term prediction of water level in Qattinah Lake. The data used are the water level data in the lake and rainfall data for the period from 1/5/2007 to 28/2/2005. 2009).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا