حققت خوارزمية التعلم العميق مؤخرًا الكثير من النجاح خاصة في مجال رؤية الكمبيوتر.يهدف البحث الحالي إلى وصف طريقة التصنيف المطبقة على مجموعة البيانات الخاصة بأنواع متعددة من الصور (صور الرادار ذي الفجوة المركبةSAR والصور ليست SAR) ، أستخدم نقل التعلم متبوعًا بأساليب الضبط الدقيق في مخطط التصنيف هذا . تم استخدام بنيات مدربة مسبقًا على قاعدة بيانات الصور المعروفهImageNet، تم استخدام نموذج VGG 16 بالفعل كمستخرج ميزات وتم تدريب مصنف جديد بناءً على الميزات المستخرجة .تركز بيانات الإدخال بشكل أساسي على مجموعة البيانات التي تتكون من خمس فئات فئة صور الرادارSAR (المنازل) وفئات الصور ليستSAR (القطط والكلاب والخيول والبشر). تم اختيار الشبكة العصبية التلافيفية (CNN) كخيار أفضل لـعملية التدريب لانها نتجت عن دقة عالية. لقد وصلنا إلى الدقة النهائية بنسبة 91.18٪ في خمس فئات مختلفة. تتم مناقشة النتائج من حيث احتمالية الدقة لكل فئة في تصنيف الصورة بالنسبة المئوية. تحصل فئة القطط على 99.6٪ ، بينما تحصل فئة المنازل على 100٪ وتحصل انواع آخرى من الفئات بمتوسط درجات 90٪ وما فوق.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
Artificial intelligence review:
Research summary
تهدف هذه الورقة البحثية إلى وصف طريقة تصنيف الصور باستخدام الشبكات العصبية التلافيفية العميقة (CNN) ونقل التعلم باستخدام نموذج VGG16. تم تطبيق هذه الطريقة على مجموعة بيانات تحتوي على خمسة أنواع من الصور: صور الرادار ذي الفجوة المركبة (SAR) وصور غير SAR (القطط، الكلاب، الخيول، والبشر). استخدم الباحثون نموذج VGG16 كمستخرج ميزات، ثم قاموا بتدريب مصنف جديد بناءً على هذه الميزات. أظهرت النتائج أن دقة التصنيف وصلت إلى 91.18%، حيث حصلت فئة القطط على دقة 99.6% وفئة المنازل على دقة 100%. تم تقييم الأداء باستخدام مقاييس مثل الدقة، F1 Score، الاسترجاع، والدقة. تم استخدام مكتبة TensorFlow ولغة البرمجة بايثون لتنفيذ النموذج. استنتج الباحثون أن استخدام نقل التعلم مع الشبكات العصبية التلافيفية يعد طريقة فعالة لتصنيف الصور بدقة عالية ووقت تدريب قصير.
Critical review
دراسة نقدية: على الرغم من أن الورقة تقدم نتائج واعدة في تصنيف الصور باستخدام نقل التعلم والشبكات العصبية التلافيفية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم التطرق بشكل كافٍ إلى كيفية التعامل مع الصور غير المتوازنة في مجموعة البيانات، حيث يمكن أن يؤثر ذلك على دقة النموذج. ثانياً، لم يتم مناقشة تأثير حجم البيانات على أداء النموذج بشكل مفصل، حيث يمكن أن يكون لحجم البيانات دور كبير في تحسين أو تقليل دقة النموذج. بالإضافة إلى ذلك، كان من الممكن تقديم مقارنة مع نماذج أخرى لتوضيح مدى تفوق النموذج المستخدم. وأخيراً، كان من الممكن تقديم تحليل أعمق للأخطاء التي واجهها النموذج لتحسين الأداء في المستقبل.
Questions related to the research
-
ما هي الفئات الخمس التي تم استخدامها في مجموعة البيانات؟
الفئات الخمس هي: القطط، الكلاب، الخيول، البشر، والمنازل (صور الرادار ذي الفجوة المركبة SAR).
-
ما هو النموذج المستخدم كمستخرج ميزات في هذه الدراسة؟
تم استخدام نموذج VGG16 كمستخرج ميزات.
-
ما هي دقة التصنيف النهائية التي تم الوصول إليها في هذه الدراسة؟
تم الوصول إلى دقة تصنيف نهائية بنسبة 91.18%.
-
ما هي مكتبة البرمجة ولغة البرمجة التي تم استخدامها لتنفيذ النموذج؟
تم استخدام مكتبة TensorFlow ولغة البرمجة بايثون لتنفيذ النموذج.
Machine learning methods for financial document analysis have been focusing mainly on the textual part. However, the numerical parts of these documents are also rich in information content. In order to further analyze the financial text, we should as
Text classifiers are regularly applied to personal texts, leaving users of these classifiers vulnerable to privacy breaches. We propose a solution for privacy-preserving text classification that is based on Convolutional Neural Networks (CNNs) and Se
Building models for realistic natural language tasks requires dealing with long texts and accounting for complicated structural dependencies. Neural-symbolic representations have emerged as a way to combine the reasoning capabilities of symbolic meth
In recent years, the problem of classifying objects in images has increased by using deep learning as a result of the industrial sector requirements. Despite of many algorithms used in this field, such as Deep Learning Neural Network DNN and Convolut
We consider the hierarchical representation of documents as graphs and use geometric deep learning to classify them into different categories. While graph neural networks can efficiently handle the variable structure of hierarchical documents using t