نقدم سلسلة من مهام البرمجة، قابلة للتكيف مع مجموعة من مستويات الخبرة من المرحلة الجامعية المتقدمة إلى الدكتوراه، لتعليم الطلاب تصميم وتنفيذ أنظمة NLP الحديثة. يتم بناء هذه المهام من الألف إلى الياء والتأكيد على فهم المكدس الكامل للنماذج التعليمية الآلية: في البداية، يقوم الطلاب بتنفيذ حساب الاستدلال والتدرج باليد، ثم استخدم Pytorch لبناء شبكات عصبية أحدث تقريبا باستخدام أفضل الممارسات الحالية. يتم اختيار الموضوعات لتغطية مجموعة واسعة من تقنيات النمذجة والاستدلال التي قد تواجه المرء، بدءا من النماذج الخطية المناسبة لتطبيقات الصناعة لنماذج التعلم العميق الحديثة المستخدمة في أبحاث NLP. يتم تخصيص المهام، مع خيارات مقيدة لتوجيه طلاب أقل خبرة أو الخيارات المفتوحة المنتهية لإعطاء حرية الطلاب المتقدمة لاستكشافها. يمكن نشر كل منهم بطريقة غير قابلة للتطبيق بالكامل، وقد تم اختبارها بشكل جماعي على أكثر من 300 طالب عبر العديد من الفصول الدراسية.
We present a series of programming assignments, adaptable to a range of experience levels from advanced undergraduate to PhD, to teach students design and implementation of modern NLP systems. These assignments build from the ground up and emphasize full-stack understanding of machine learning models: initially, students implement inference and gradient computation by hand, then use PyTorch to build nearly state-of-the-art neural networks using current best practices. Topics are chosen to cover a wide range of modeling and inference techniques that one might encounter, ranging from linear models suitable for industry applications to state-of-the-art deep learning models used in NLP research. The assignments are customizable, with constrained options to guide less experienced students or open-ended options giving advanced students freedom to explore. All of them can be deployed in a fully autogradable fashion, and have collectively been tested on over 300 students across several semesters.
References used
https://aclanthology.org/
We present a set of assignments for a graduate-level NLP course. Assignments are designed to be interactive, easily gradable, and to give students hands-on experience with several key types of structure (sequences, tags, parse trees, and logical form
We describe two Jupyter notebooks that form the basis of two assignments in an introductory Natural Language Processing (NLP) module taught to final year undergraduate students at Dublin City University. The notebooks show the students how to train a
Broader disclosive transparency---truth and clarity in communication regarding the function of AI systems---is widely considered desirable. Unfortunately, it is a nebulous concept, difficult to both define and quantify. This is problematic, as previo
Multi-layer multi-head self-attention mechanism is widely applied in modern neural language models. Attention redundancy has been observed among attention heads but has not been deeply studied in the literature. Using BERT-base model as an example, t
Syrian narrative writers have used a number of symbols in
their narrative works, one of which is fire, which has been used very
flexibly. Fire stood for punishment, catharsis, fear, and desire both in
relation to the theme of the relevant story an