شفافية إفصائية أوسع --- الحقيقة والوضوح في مجال الاتصالات فيما يتعلق بوظائف منظمة العفو الدولية --- تعتبر على نطاق واسع مرغوب فيه. لسوء الحظ، إنه مفهوم غامض، يصعب تحديده وقياسه. هذا هو الإشكارات، كما أظهر العمل السابق مفاضلات محتملة وعواقب سلبية للإفصاح عن الشفافية، مثل تأثير الالتباس، حيث تفهم الكثير من المعلومات "فهم القارئ لما يعني وصف النظام. لقد جعلت الطبيعة الشخصية الشفافية الإفصائية دراسة عميقة في هذه المشكلات وعلاجاتهم صعبة. لتحسين هذه الحالة، نقدم مقاييس احتمالية النموذج العصبي النموذجي النموذجي مباشرة من الشفافية الكشفية، وإظهار أنهم يرتبطون بالمستخدم وفكرات الخبراء من شفافية النظام، مما يجعلهم وكيلا موضوعيا صالحا. أخيرا، نوضح استخدام هذه المقاييس في دراسة تجريبية يحدد العلاقات بين الشفافية والارتباك وتصورات المستخدمين في كائن من أوصاف نظام NLP الحقيقي.
Broader disclosive transparency---truth and clarity in communication regarding the function of AI systems---is widely considered desirable. Unfortunately, it is a nebulous concept, difficult to both define and quantify. This is problematic, as previous work has demonstrated possible trade-offs and negative consequences to disclosive transparency, such as a confusion effect, where too much information'' clouds a reader's understanding of what a system description means. Disclosive transparency's subjective nature has rendered deep study into these problems and their remedies difficult. To improve this state of affairs, We introduce neural language model-based probabilistic metrics to directly model disclosive transparency, and demonstrate that they correlate with user and expert opinions of system transparency, making them a valid objective proxy. Finally, we demonstrate the use of these metrics in a pilot study quantifying the relationships between transparency, confusion, and user perceptions in a corpus of real NLP system descriptions.
References used
https://aclanthology.org/
This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says A man is walking a chicken in the park'', it is
We present a series of programming assignments, adaptable to a range of experience levels from advanced undergraduate to PhD, to teach students design and implementation of modern NLP systems. These assignments build from the ground up and emphasize
Text generation from semantic graphs is traditionally performed with deterministic methods, which generate a unique description given an input graph. However, the generation problem admits a range of acceptable textual outputs, exhibiting lexical, sy
Developers of text generation models rely on automated evaluation metrics as a stand-in for slow and expensive manual evaluations. However, image captioning metrics have struggled to give accurate learned estimates of the semantic and pragmatic succe
Zero-shot cross-domain dialogue state tracking (DST) enables us to handle unseen domains without the expense of collecting in-domain data. In this paper, we propose a slot descriptions enhanced generative approach for zero-shot cross-domain DST. Spec