While Automatic Speech Recognition has been shown to be vulnerable to adversarial attacks, defenses against these attacks are still lagging. Existing, naive defenses can be partially broken with an adaptive attack. In classification tasks, the Random
ized Smoothing paradigm has been shown to be effective at defending models. However, it is difficult to apply this paradigm to ASR tasks, due to their complexity and the sequential nature of their outputs. Our paper overcomes some of these challenges by leveraging speech-specific tools like enhancement and ROVER voting to design an ASR model that is robust to perturbations. We apply adaptive versions of state-of-the-art attacks, such as the Imperceptible ASR attack, to our model, and show that our strongest defense is robust to all attacks that use inaudible noise, and can only be broken with very high distortion.
Hate speech has grown significantly on social media, causing serious consequences for victims of all demographics. Despite much attention being paid to characterize and detect discriminatory speech, most work has focused on explicit or overt hate spe
ech, failing to address a more pervasive form based on coded or indirect language. To fill this gap, this work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message and its implication. We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech, and we discuss key features that challenge existing models. This dataset will continue to serve as a useful benchmark for understanding this multifaceted issue.
Unifying acoustic and linguistic representation learning has become increasingly crucial to transfer the knowledge learned on the abundance of high-resource language data for low-resource speech recognition. Existing approaches simply cascade pre-tra
ined acoustic and language models to learn the transfer from speech to text. However, how to solve the representation discrepancy of speech and text is unexplored, which hinders the utilization of acoustic and linguistic information. Moreover, previous works simply replace the embedding layer of the pre-trained language model with the acoustic features, which may cause the catastrophic forgetting problem. In this work, we introduce Wav-BERT, a cooperative acoustic and linguistic representation learning method to fuse and utilize the contextual information of speech and text. Specifically, we unify a pre-trained acoustic model (wav2vec 2.0) and a language model (BERT) into an end-to-end trainable framework. A Representation Aggregation Module is designed to aggregate acoustic and linguistic representation, and an Embedding Attention Module is introduced to incorporate acoustic information into BERT, which can effectively facilitate the cooperation of two pre-trained models and thus boost the representation learning. Extensive experiments show that our Wav-BERT significantly outperforms the existing approaches and achieves state-of-the-art performance on low-resource speech recognition.
Transformer-based models have gained increasing popularity achieving state-of-the-art performance in many research fields including speech translation. However, Transformer's quadratic complexity with respect to the input sequence length prevents its
adoption as is with audio signals, which are typically represented by long sequences. Current solutions resort to an initial sub-optimal compression based on a fixed sampling of raw audio features. Therefore, potentially useful linguistic information is not accessible to higher-level layers in the architecture. To solve this issue, we propose Speechformer, an architecture that, thanks to reduced memory usage in the attention layers, avoids the initial lossy compression and aggregates information only at a higher level according to more informed linguistic criteria. Experiments on three language pairs (en→de/es/nl) show the efficacy of our solution, with gains of up to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in a low resource scenario.
Due to the popularity of intelligent dialogue assistant services, speech emotion recognition has become more and more important. In the communication between humans and machines, emotion recognition and emotion analysis can enhance the interaction be
tween machines and humans. This study uses the CNN+LSTM model to implement speech emotion recognition (SER) processing and prediction. From the experimental results, it is known that using the CNN+LSTM model achieves better performance than using the traditional NN model.
Due to the recent advances of natural language processing, several works have applied the pre-trained masked language model (MLM) of BERT to the post-correction of speech recognition. However, existing pre-trained models only consider the semantic co
rrection while the phonetic features of words is neglected. The semantic-only post-correction will consequently decrease the performance since homophonic errors are fairly common in Chinese ASR. In this paper, we proposed a novel approach to collectively exploit the contextualized representation and the phonetic information between the error and its replacing candidates to alleviate the error rate of Chinese ASR. Our experiment results on real world speech recognition datasets showed that our proposed method has evidently lower CER than the baseline model, which utilized a pre-trained BERT MLM as the corrector.
In recent years, speech synthesis system can generate speech with high speech quality. However, multi-speaker text-to-speech (TTS) system still require large amount of speech data for each target speaker. In this study, we would like to construct a m
ulti-speaker TTS system by incorporating two sub modules into artificial neural network-based speech synthesis system to alleviate this problem. First module is to add speaker embedding into encoding module for generating speech while a large amount of the speech data from target speaker is not necessary. For speaker embedding method, in our study, two main speaker embedding methods, namely speaker verification embedding and voice conversion embedding, are compared to deciding which one is suitable for our personalized TTS system. Second, we substituted the conventional post-net module, which is adopted to enhance the output spectrum sequence, to further improving the speech quality of the generated speech utterance. Here, a post-filter network is used. Finally, experiment results showed that the speaker embedding is useful by adding it into encoding module and the resultant speech utterance indeed perceived as the target speaker. Also, the post-filter network not only improving the speech quality and also enhancing the speaker similarity of the generated speech utterances. The constructed TTS system can generate a speech utterance of the target speaker in fewer than 2 seconds. In the future, we would like to further investigate the controllability of the speaking rate or perceived emotion state of the generated speech.
The Semantic Verbal Fluency Task (SVF) is an efficient and minimally invasive speech-based screening tool for Mild Cognitive Impairment (MCI). In the SVF, testees have to produce as many words for a given semantic category as possible within 60 secon
ds. State-of-the-art approaches for automatic evaluation of the SVF employ word embeddings to analyze semantic similarities in these word sequences. While these approaches have proven promising in a variety of test languages, the small amount of data available for any given language limits the performance. In this paper, we for the first time investigate multilingual learning approaches for MCI classification from the SVF in order to combat data scarcity. To allow for cross-language generalisation, these approaches either rely on translation to a shared language, or make use of several distinct word embeddings. In evaluations on a multilingual corpus of older French, Dutch, and German participants (Controls=66, MCI=66), we show that our multilingual approaches clearly improve over single-language baselines.
In this paper, we describe our end-to-end multilingual speech translation system submitted to the IWSLT 2021 evaluation campaign on the Multilingual Speech Translation shared task. Our system is built by leveraging transfer learning across modalities
, tasks and languages. First, we leverage general-purpose multilingual modules pretrained with large amounts of unlabelled and labelled data. We further enable knowledge transfer from the text task to the speech task by training two tasks jointly. Finally, our multilingual model is finetuned on speech translation task-specific data to achieve the best translation results. Experimental results show our system outperforms the reported systems, including both end-to-end and cascaded based approaches, by a large margin. In some translation directions, our speech translation results evaluated on the public Multilingual TEDx test set are even comparable with the ones from a strong text-to-text translation system, which uses the oracle speech transcripts as input.
Speech separation is a problem in the field of speech processing that has been studied in full swing recently. However, there has not been much work studying a multi-accent speech separation scenario. Unseen speakers with new accents and noise arouse
d the domain mismatch problem which cannot be easily solved by conventional joint training methods. Thus, we applied MAML and FOMAML to tackle this problem and obtained higher average Si-SNRi values than joint training on almost all the unseen accents. This proved that these two methods do have the ability to generate well-trained parameters for adapting to speech mixtures of new speakers and accents. Furthermore, we found out that FOMAML obtains similar performance compared to MAML while saving a lot of time.