Do you want to publish a course? Click here

Improving Transformer efficiency has become increasingly attractive recently. A wide range of methods has been proposed, e.g., pruning, quantization, new architectures and etc. But these methods are either sophisticated in implementation or dependent on hardware. In this paper, we show that the efficiency of Transformer can be improved by combining some simple and hardware-agnostic methods, including tuning hyper-parameters, better design choices and training strategies. On the WMT news translation tasks, we improve the inference efficiency of a strong Transformer system by 3.80x on CPU and 2.52x on GPU.
We present Hidden-State Optimization (HSO), a gradient-based method for improving the performance of transformer language models at inference time. Similar to dynamic evaluation (Krause et al., 2018), HSO computes the gradient of the log-probability the language model assigns to an evaluation text, but uses it to update the cached hidden states rather than the model parameters. We test HSO with pretrained Transformer-XL and GPT-2 language models, finding improvement on the WikiText-103 and PG-19 datasets in terms of perplexity, especially when evaluating a model outside of its training distribution. We also demonstrate downstream applicability by showing gains in the recently developed prompt-based few-shot evaluation setting, again with no extra parameters or training data.
In this paper, we present our submission to Shared Metrics Task: RoBLEURT (Robustly Optimizing the training of BLEURT). After investigating the recent advances of trainable metrics, we conclude several aspects of vital importance to obtain a well-per formed metric model by: 1) jointly leveraging the advantages of source-included model and reference-only model, 2) continuously pre-training the model with massive synthetic data pairs, and 3) fine-tuning the model with data denoising strategy. Experimental results show that our model reaching state-of-the-art correlations with the WMT2020 human annotations upon 8 out of 10 to-English language pairs.
Word alignment identify translational correspondences between words in a parallel sentence pair and are used and for example and to train statistical machine translation and learn bilingual dictionaries or to perform quality estimation. Subword token ization has become a standard preprocessing step for a large number of applications and notably for state-of-the-art open vocabulary machine translation systems. In this paper and we thoroughly study how this preprocessing step interacts with the word alignment task and propose several tokenization strategies to obtain well-segmented parallel corpora. Using these new techniques and we were able to improve baseline word-based alignment models for six language pairs.
In dialog systems, the Natural Language Understanding (NLU) component typically makes the interpretation decision (including domain, intent and slots) for an utterance before the mentioned entities are resolved. This may result in intent classificati on and slot tagging errors. In this work, we propose to leverage Entity Resolution (ER) features in NLU reranking and introduce a novel loss term based on ER signals to better learn model weights in the reranking framework. In addition, for a multi-domain dialog scenario, we propose a score distribution matching method to ensure scores generated by the NLU reranking models for different domains are properly calibrated. In offline experiments, we demonstrate our proposed approach significantly outperforms the baseline model on both single-domain and cross-domain evaluations.
Abstract Phonological generalizations are finite-state. While Optimality Theory is a popular framework for modeling phonology, it is known to generate non-finite-state mappings and languages. This paper demonstrates that Optimality Theory is capable of generating non-context-free languages, contributing to the characterization of its generative capacity. This is achieved with minimal modification to the theory as it is standardly employed.
The study investigated the survival ability of probiotic Lactobacillus casei in apple juice to produce functional juice ,as well as, optimizing the growth conditions of L.casei in apple juice including concentration, temperature ,inoculum size usi ng Response Surface Methodology as statistical method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا