Do you want to publish a course? Click here

Optimizing over subsequences generates context-sensitive languages

تحسين أكثر من اللاحقة التي تولد اللغات الحساسة للسياق

136   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract Phonological generalizations are finite-state. While Optimality Theory is a popular framework for modeling phonology, it is known to generate non-finite-state mappings and languages. This paper demonstrates that Optimality Theory is capable of generating non-context-free languages, contributing to the characterization of its generative capacity. This is achieved with minimal modification to the theory as it is standardly employed.



References used
https://aclanthology.org/
rate research

Read More

Many existing approaches for interpreting text classification models focus on providing importance scores for parts of the input text, such as words, but without a way to test or improve the interpretation method itself. This has the effect of compou nding the problem of understanding or building trust in the model, with the interpretation method itself adding to the opacity of the model. Further, importance scores on individual examples are usually not enough to provide a sufficient picture of model behavior. To address these concerns, we propose MOXIE (MOdeling conteXt-sensitive InfluencE of words) with an aim to enable a richer interface for a user to interact with the model being interpreted and to produce testable predictions. In particular, we aim to make predictions for importance scores, counterfactuals and learned biases with MOXIE. In addition, with a global learning objective, MOXIE provides a clear path for testing and improving itself. We evaluate the reliability and efficiency of MOXIE on the task of sentiment analysis.
Online platforms and communities establish their own norms that govern what behavior is acceptable within the community. Substantial effort in NLP has focused on identifying unacceptable behaviors and, recently, on forecasting them before they occur. However, these efforts have largely focused on toxicity as the sole form of community norm violation. Such focus has overlooked the much larger set of rules that moderators enforce. Here, we introduce a new dataset focusing on a more complete spectrum of community norms and their violations in the local conversational and global community contexts. We introduce a series of models that use this data to develop context- and community-sensitive norm violation detection, showing that these changes give high performance.
Word embeddings learn implicit biases from linguistic regularities captured by word co-occurrence statistics. By extending methods that quantify human-like biases in word embeddings, we introduce ValNorm, a novel intrinsic evaluation task and method to quantify the valence dimension of affect in human-rated word sets from social psychology. We apply ValNorm on static word embeddings from seven languages (Chinese, English, German, Polish, Portuguese, Spanish, and Turkish) and from historical English text spanning 200 years. ValNorm achieves consistently high accuracy in quantifying the valence of non-discriminatory, non-social group word sets. Specifically, ValNorm achieves a Pearson correlation of r=0.88 for human judgment scores of valence for 399 words collected to establish pleasantness norms in English. In contrast, we measure gender stereotypes using the same set of word embeddings and find that social biases vary across languages. Our results indicate that valence associations of non-discriminatory, non-social group words represent widely-shared associations, in seven languages and over 200 years.
Multilingual question answering over knowledge graph (KGQA) aims to derive answers from a knowledge graph (KG) for questions in multiple languages. To be widely applicable, we focus on its zero-shot transfer setting. That is, we can only access train ing data in a high-resource language, while need to answer multilingual questions without any labeled data in target languages. A straightforward approach is resorting to pre-trained multilingual models (e.g., mBERT) for cross-lingual transfer, but there is a still significant gap of KGQA performance between source and target languages. In this paper, we exploit unsupervised bilingual lexicon induction (BLI) to map training questions in source language into those in target language as augmented training data, which circumvents language inconsistency between training and inference. Furthermore, we propose an adversarial learning strategy to alleviate syntax-disorder of the augmented data, making the model incline to both language- and syntax-independence. Consequently, our model narrows the gap in zero-shot cross-lingual transfer. Experiments on two multilingual KGQA datasets with 11 zero-resource languages verify its effectiveness.
Multilingual neural machine translation models typically handle one source language at a time. However, prior work has shown that translating from multiple source languages improves translation quality. Different from existing approaches on multi-sou rce translation that are limited to the test scenario where parallel source sentences from multiple languages are available at inference time, we propose to improve multilingual translation in a more common scenario by exploiting synthetic source sentences from auxiliary languages. We train our model on synthetic multi-source corpora and apply random masking to enable flexible inference with single-source or bi-source inputs. Extensive experiments on Chinese/English-Japanese and a large-scale multilingual translation benchmark show that our model outperforms the multilingual baseline significantly by up to +4.0 BLEU with the largest improvements on low-resource or distant language pairs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا