Do you want to publish a course? Click here

There are various types of industrial fibers such as: (polypropylene fiber, fiberglass, silica fume powder, etc..). These fibers are used widely as additives for improving concrete strength. We study in our research the effect of each of polypropylen e fibers, steel fibers, and silica fume powder, on two kinds of concrete mix the first ordinary mix and the second is mix other with Mazar sand. We found after the studying of mechanical properties for those mixes that a slight improvement on tensile strength of concrete has occurred, an increasing of compression strength of concrete has happened, and the failure style has changed according to the type of additive compared with concrete without additive.
Recently worldwide researches have been devoted to the use of steel fibers recovered from used tires in concrete. In Syria the amount of recovered steel from used tires is estimated about 6000 tons/year. For this purpose a bead wire having a diamete r of 0.8 mm from burnt tires was extracted and used. Three mixes with cement content 300- 350 -400kg/m3 were produced incorporating three different volumes of fiber 0.5%, 1.0%, and 1.5% and three different length 30-40-60 mm. The concrete obtained by adding these fibers evidenced a satisfactory improvement of the fragile matrix mostly in terms of toughness and post cracking behavior On the other hand it was improvements in compressive strength by steel fiber inclusion the interesting results confirm the promising application of concrete reinforced with steel fibers extracted from used tires in aircraft pavement hydraulic structures and ground slab in fabrics.
This research presents an experimental study behaviour of high strength concrete, for evaluation of stress - strain curve and derivation of factors of equivalent compressive stress block, we depend it in design of high strength concrete elements. For this purpose, number of cylinders specimens with strength 60 MPa were prepared and tested in compression, then curve was obtained. The results showed the possibility of producing high strength concrete from local materials and with strengths are highest than those were obtained, the resulting diagrams of curve are shown to be essentially linearly elastic up to failure with a steeper declining portion of the stress - strain diagram, which agree with the results of global researches, the failure was almost sudden and rapid with increasing strength which shows that the highstrength concrete less ductile than normal concrete at the failure. Curve of high strength concrete differs from that normal concrete, this affects on the properties of rectangular equivalent stress block which requires modifications on the factors led to optimum represent for it and with evaluation of curve of the tested specimens, the diagram takes a trapezoidal shape ( ), its value at the top is and the depth of the compressive block is and we found and ( is average compression/cylinder compressive strength of concrete, is ratio of the active depth that defined location of compression force center), when concrete strength increases up , the diagram shape will be closer to triangular than trapezoidal and then curve takes the shape of triangle its value at the top is and the depth is and with replacing triangular diagram to rectangle.
This paper deals with the development of engineering database on the changes in the mechanical properties of high performance concretes mixtures when exposed to high temperature up to 850oC. The results of an experimental investigation into the e ffects of high temperature on the residual compressive strengths for high performance concretes made with ordinary Portland cement are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا