Do you want to publish a course? Click here

Effect of addition steel fiber abstracted from recycled tires upon the concrete compressive strength

تأثير إضافة الألياف الفولاذية المستخرجة من إطارات السيارات المستهلكة على مقاومة الضغط للخرسانة

2883   2   96   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Recently worldwide researches have been devoted to the use of steel fibers recovered from used tires in concrete. In Syria the amount of recovered steel from used tires is estimated about 6000 tons/year. For this purpose a bead wire having a diameter of 0.8 mm from burnt tires was extracted and used. Three mixes with cement content 300- 350 -400kg/m3 were produced incorporating three different volumes of fiber 0.5%, 1.0%, and 1.5% and three different length 30-40-60 mm. The concrete obtained by adding these fibers evidenced a satisfactory improvement of the fragile matrix mostly in terms of toughness and post cracking behavior On the other hand it was improvements in compressive strength by steel fiber inclusion the interesting results confirm the promising application of concrete reinforced with steel fibers extracted from used tires in aircraft pavement hydraulic structures and ground slab in fabrics.

References used
ACI Committee 544, Design Considerations for Steel Fiber Reinforced Concrete, ACI 544.4R-88
ACI Committee 544, State-of-The-Art Report on Fiber Reinforced Concrete, ACI 544 1.R-96
AIELLO; LEONE :steel fibers from waste tires as reinforcement in concrete:a mechanical characterization. department of innovation engineering, university ofsalento, via monteroni, 73100, lecce, italy
BANTHIA & TROTTIER. Test Methods for Flexural Toughness Characterization of Fiber Reinforced Concrete: Some Concerns and a Proposition no. ACI Materials Journal, V. 92 No. 1, January-February 1995.p.1-10
BENCARDINO, F., RIZZUTI, L., SPADEA, G. Experimental tests vs. theoretical modeling for FRC in compression. In Proc. 6th Int. Conf. on Fracture Mechanics of Concrete and Concrete Structures - FraMCoS-6, Catania, Italy, 2007
rate research

Read More

This research presents an experimental study about the effect of steel fibers on the main variables of stress- strain curve for high strength concrete on simple compression, which are: shape of stress- strain curve, ductility factor, energy absorpt ion capacity. For this purpose, series of cylinders concrete specimens were prepared in compressive strength (70 MPa). the steel fiber with aspect ratio of L/D =70 were added at the volume fractions of (0-1-1.5-2)%. The cylinders were tested under a monotonic loading at compression, and as a result of the tests, the total curve of stress- strain was obtained. The experimental results of research showed a positive effect of steel fibers on the behavior of high strength concrete, this effect increased with increasing volume fraction of steel fibers. It can be seen from stress-strain curve, whereas the slope of the ascending branch is not much affected. The descending branch of the stress- strain curve decreases by the increase in the fiber volume fraction. This means the ductility and toughness improve with the addition of steel fibers and as a result the behavior of high strength concrete has gone far away from being brittle as it is used to be.
Thepaper studies the mechanical properties ofsteel fibers reinforced lightweight concrete.This kind of concrete is produced by usingscoria aggregateswhich can be found abundantly in Syria. Thelightweight concrete mixeswere designed for three differ ent percentage of steel fibers (0, 0.5, 0.75)%. Different tests were performed to determine mechanical properties of product concrete such as compressive strength, elasticity modulus, splitting tensile strengthand flexural strengthalso; the stress–strain diagram of produced lightweight concrete was established under compression. The results showedanincrease of the compressive, splitting tensile and flexural strengths reach up 16.9%, 25.6%, and 53.6% respectivelywhen the steel fibers were used. Also the results indicated the importance of using the steel fibers to improve the performance of concrete and change its brittle behavior to ductile behavior.
the purpose of this research was to concentrate on this subject, where four types of concrete mixes of the same shape were prepared (Abrams settlement about 20 cm), but the cement content and compression strength in each mixture were different, al l samples were exposed to destructive acid effect (nitric acid, sulphuric acid ) of a ratio 3% and PH ≤ 4.
This research studies the effect of the addition of polypropylene fibers (PF) on the properties of the swelling clayey soil. The effect of PF on the shear strength of the clayey soil has been studied and the results show that adding PF, up to spec ific value, increases the shear strength. Beyond this value of addition, the shear strength decreases. The increase in shear strength was about (100-110) % and the optimal addition ratio was determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا