ترغب بنشر مسار تعليمي؟ اضغط هنا

المعادلات التفاضلية العادية

Ordinary differential equations - Equations différentielles ordinaires

825   6   4   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث رياضيات
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

المعادلة التفاضلية differential equationهي علاقة تربط بين متحول (متغير) مستقل واحد أو أكثر والدالة function المبحوث عنها التابعة لهذه المتحولات (التي يفترض أنها وحيدة التعيين) ومشتقات هذه الدالَّة بالنسبة لهذه المتحولات، التي يفترض أنها متحولات حقيقية وكذلك الدالة.



المراجع المستخدمة
ﻻ يوجد مراجع
قيم البحث

اقرأ أيضاً

تتضمن الرسالة أربعة فصول : الفصل الأول : ويتضمن بعض المفاهيم والتعاريف والمبرهنات التي تتعلق بالبحث. الفصل الثاني : دراسة استقرار جملة معادلات تفاضلية خطية لا توقفيه ذات تأخير زمني . الفصل الثالث :دراسة استقرار حل جملة المعادلات التفاضلية الخطية ذات تأخير زمني . الفصل الرابع : دراسة استقرار حل المعادلات التفاضلية لا توقفية ذات تأخر زمني باستخدام نظرية النقطة الثابتة
هدف هذا البحث إلى تسليط الضوء على نتائج كلاسيكية و تقديم مبرهنات جديدة مدعمة بالأمثلة التطبيقية المناسبة عن السلوك المقارب في جوار اللانهاية لحلول معادلات تفاضلية غير خطية من المرتبة الثالثة باستخدام المتراجحة التكاملية لبيهاري ، سوف نحصل على الشروط الكافية التي من أجلها تكون الحلول القابلة للاستمرار جميعها لها السلوك المقارب.
نقدم في هذا العمل محاكاة عددية للمعادلات التفاضلية العشوائية باستخدام تقريبات دالة شرائحية. تمت محاكاة عملية وينر العشوائية المستمرة مع الزمن كعملية منفصلة، ثم دراسة الاستقرار العشوائي المقارب للتقريبات الشرائحية مع خمس نقاط تجميع عندما تُطَبقْ مع عم لية وينر لحل منظومات من المعادلات التفاضلية العشوائية. تبين الدراسة أن الطريقة تكون مستقرة و متقاربة عندما يتم تطبيقها لحل منظومة معادلات تفاضلية عشوائية خطية و غير خطية. و قد تم اختبار فعالية الطريقة المقترحة بحل مسألتي اختبار الأولى خطية و الثانية غير خطية، و تشير النتائج العددية إلى فعالية و كفاءة الطريقة الشرائحية المقترحة بالمقارنة مع طرائق أولر-مارياما، ميلستين، رانج-كوتا.
نعرف في هذا البحث المفاهيم الآتية: المصفوفة العشوائية. الاستقرار المقارب بالوسط التربيعي. صيغة جملة معادلات تفاضلية عشوائية لا توقفية مضطربة. صيغة جملة معادلات تفاضلية عشوائية لا توقفية مضطربة معممة. إيجاد جملة المعادلات التفاضلية التي تحدد العز وم الجزئية من المرتبة الثانية. إيجاد جملة المعادلات التفاضلية التي تحدد مصفوفات توابع ليابونوف. إيجاد الشروط الواجب تحققها على مصفوفات توابع ليابونوف حتى نضمن استقرار حل الجملة المدروسة استقرار مقارب.
نقدم في هذا البحث دراسة حول الكلفة الزمنية المضافة إلى بيئة الحوسبة الشبكية نتيجة استخدام آلية تخزين / استرجاع متناسقة للتسامح مع الأعطال في هذه البيئة، لنصل من خلال هذه الدراسة إلى نموذج رياضي يحدد لنا الوقت الأنسب لحفظ نقاط التخزين للتطبيق بهدف تحقيق أقل زمن لانتهاء تنفيذ التطبيق المتوازي، و كان ذلك عن طريق نمذجة تسلسلية باستخدام المعادلات التفاضلية لكل من الأعطال المدروسة و بيئة التنفيذ و أخيرا آلية التسامح مع الأعطال المختارة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا